Synthesis 2022; 54(17): 3771-3784
DOI: 10.1055/a-1647-7292
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Modular Synthesis of Carbazole-Substituted Phthalimides as Potential Photocatalysts

Zsombor Gonda
,
Tamás Földesi
,
Bálint Nagy
,
The authors thank the support of National Research, Development and Innovation Office (NKFIH K125120, PD124592 and KH130048), ELTE Thematic Excellence Programme 2020 Supported by National Research, Development and Innovation Office - TKP2020-IKA-05. This project was also supported by Central Europe Leuven Strategic Alliance 2020.


This paper is dedicated to the memory of Professor Ferenc Fülöp.

Abstract

The modular synthesis of carbazole functionalized phthalimides (PIs) and their applicability as catalyst in selected photocatalytic transformations are reported. The developed synthetic approach provides high variability of phthalimide considering that the synthesis of the phthalimide core can be easily performed. Starting from fluorophthalic acid anhydrides, the corresponding fluorophthalimides were prepared with various amines, and the fluoro function ensured the introduction of carbazoles into the phthalimide framework through aromatic nucleophilic substitution. Besides the synthetic developments, some of the carbazolyl phthalimides were tested in four different photocatalytic transformations, which showed attractive and comparable activity to the known 4-CzIPN and noble metal complexes.

Supporting Information



Publication History

Received: 23 July 2021

Accepted after revision: 17 September 2021

Accepted Manuscript online:
17 September 2021

Article published online:
10 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tóth BL, Tischler O, Novák Z. Tetrahedron Lett. 2016; 57: 4505
    • 1b Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 1c Qin Q, Jiang H, Hu Z, Ren D, Yu S. Chem. Rec. 2017; 17: 754
    • 1d Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
    • 1e Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 1f Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
    • 1g Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
    • 1h Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
    • 1i Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 1j Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
    • 1k Reiser O. Acc. Chem. Res. 2016; 49: 1990
    • 1l Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
    • 1m Yoon TP. Acc. Chem. Res. 2016; 49: 2307
    • 1n Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 1o Niu P, Li J, Zhang Y, Huo C. Eur. J. Org. Chem. 2020; 36: 5801
    • 1p Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1q Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
    • 1r Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
    • 1s Larsen CB, Wenger OS. Chem. Eur. J. 2017; 24: 2039
    • 1t Theodoropoulou MA, Nikitas NF, Kokotos CG. Beilstein J. Org. Chem. 2020; 16: 833
    • 1u Nikitas NF, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2021; 19: 5237
  • 2 Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
  • 3 Hedstrand DM, Kruizinga WH, Kellogg RM. Tetrahedron Lett. 1978; 1255
    • 4a Gonda Zs, Béke F, Tischler O, Petró M, Novák Z, Tóth BL. Eur. J. Org. Chem. 2017; 2112
    • 4b Hamri S, Bouchaour T, Maschke U. Macromol. Symp. 2014; 336: 75
    • 4c Schuller WH, Lawrence RV. J. Org. Chem. 1963; 28: 1386
    • 4d Bosanac T, Wilcox CS. Org. Lett. 2004; 6: 2321
    • 4e Ams MR, Wilcox CS. J. Am. Chem. Soc. 2007; 129: 3966
    • 5a Luo J, Zhang J. ACS Catal. 2016; 6: 873
    • 5b Shang T, Lu L, Cao Z, Liu Y, He W, Yu B. Chem. Commun. 2019; 55: 5408
    • 6a Li M, Liu Y, Duan R, Wei X, Yi Y, Wang Y, Chen C.-F. Angew. Chem. Int. Ed. 2017; 56: 8818
    • 6b Li M, Chen C.-F. PCT Int. Appl CN 106966954 A, 2017
    • 6c Zhong C, Zhimin D, Haiyu H, Minghui L, Xiaoying L, Haisheng P, Qinghua W, Shengnan X, Changmei Z, Qingyang Z. PCT Int. Appl CN 109456250 A, 2018
    • 6d Shibano M, Ochiai H, Suzuki K, Kamitakahara H, Kaji H, Takano T. Macromolecules 2020; 53: 2864
    • 6e Zhang L, Li M, Gao Q, Chen C. Chem. Commun. 2020; 56: 4296
    • 6f Li M, Li S, Zhang D, Cai M, Duan L, Fung M, Chen C.-F. Angew. Chem. Int. Ed. 2018; 57: 2889
  • 7 Danz M. PCT Int. Appl WO 2016042070 A1, 2016
  • 8 Ban X, Jiang W, Zheng Z, Wang J, Xia L, Zhou J, Sun Y. Org. Electron. 2015; 24: 65
  • 9 Tian H, Yang H, Tian C, An G, Li G. Org. Lett. 2020; 22: 7709
  • 10 Sherwood TC, Li N, Yazdani AN, Dhar TG. M. J. Org. Chem. 2018; 83: 3000
  • 11 Varga B, Gonda Zs, Tóth BL, Kotschy A, Novák Z. Eur. J. Org. Chem. 2020; 1466
  • 12 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 13 Capitosti SM, Hansen TP, Brown ML. Bioorg. Med. Chem. 2004; 12: 327
  • 14 Han Y, Yang B. Patent CN 109734647 A 20190510, 2019
  • 15 Makhseed S, Ibrahim F, Samuel J. Polymer 2012; 53: 2964
  • 16 De Sarkar S, Ackermann L. Chem. Eur. J. 2014; 20: 13932
  • 17 Orlicki JA, Thompson JL, Markoski LJ, Sill KN, Moore JS. J. Polymer Sci., Part A: Polym. Chem. 2002;  40:  936
  • 18 Kumar V, Chand K, Chorell E. ChemistrySelect 2017; 2: 3293
    • 19a Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
    • 19b Luo J, Zhang J. ACS Catal. 2016; 6: 873
  • 20 Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
  • 21 Liu X, Wang Y, Li M, Zhu Y, Chen C. Org. Elect. 2021; 88: 106017