Subscribe to RSS
DOI: 10.1055/a-1652-1162
Interstitielle Zystitis: Was gibt es Neues zur Ätiopathogenese?
Interstitial cystitis: the latest findings on its aetiopathogenesisZusammenfassung
Neue Erkenntnisse bringen Fortschritte in das Verständnis der komplizierten Ätiopathogenese der Interstitiellen Zystitis/Bladder Pain Syndrom (IC/BPS), deren Kausalitäten bisher nur in Fragmenten entschlüsselt wurden. Dabei zeigt sich ein immer komplexeres Netzwerk von Pathomechanismen, in denen die oft genannten Mastzellen und Urothelveränderungen nur ein Fragment der pathologischen Veränderungen zu sein scheinen. Neueste Erkenntnisse für eine mögliche genetische und epigenetische Veranlagung basieren auf Stammbaumanalysen, Nachweisen von Einzelnukleotid-Polymorphismen und eindeutigen Veränderungen bei Differentiell Exprimierten Genen. Multiple Veränderungen lassen sich auf molekularer Ebene nachweisen. Der Plättchenaktivierende Faktor, VEGF, das Corticotropin Releasing Hormone und das Inflammasom sind wichtige Player im Verständnis der Erkrankung. Der Pathomechanismus der „Aktivierung“ der IC/BPS bleibt immer noch ungeklärt. Neue Ansatzpunkte könnten Virusnachweise (Epstein-Barr Virus, BK Polyomaviren) oder bakterielle Entzündungen durch in Standardkulturen nicht nachweisbaren Erregern geben.
Abstract
New findings provide progress in the understanding of the complicated aetiopathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS), whose causalities have only been deciphered in fragments so far. An increasingly complex network of pathomechanisms is emerging, in which the frequently mentioned mast cells and urothelial changes seem to be only a fragment of the pathological changes. The latest findings regarding a possible genetic and epigenetic predisposition are based on pedigree analyses, detection of single nucleotide polymorphisms and significant changes in differentially expressed genes. Multiple alterations can be detected at the molecular level. Platelet-activating factor, VEGF, corticotropin-releasing hormone and the inflammasome are important players in understanding the disease, but the pathomechanism underlying the „activation“ of IC remains unclear. New starting points could be the detection of viruses (Epstein-Barr virus, BK polyomaviruses) or bacterial inflammation by pathogens that cannot be detected in standard cultures.
Publication History
Received: 09 June 2021
Accepted after revision: 16 September 2021
Article published online:
30 November 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Warren JW, Brown V, Jacobs S. et al. Urinary tract infection and inflammation at onset of interstitial cystitis/painful bladder syndrome. Urology 2008; 71: 1085-1090
- 2 Kispert SE, Marentette J, Campian EC. et al. Cigarette smoke-induced urothelial cell damage: potential role of platelet-activating factor. Physiol Rep 2017; 5: e13177
- 3 Warren JW, Morozov V, Howard FM. et al. Before the onset of interstitial cystitis/bladder pain syndrome, the presence of multiple non-bladder syndromes is strongly associated with a history of multiple surgeries. J Psychosom Res 2014; 76: 75-79
- 4 Kujala MM, Tammela TL, Pöyhönen A. et al. Prevalence of autoimmune disorders among bladder pain syndrome patients' relatives. Scand J Urol 2021; 55: 72-77
- 5 Chung S-D, Huang C-C, Lin H-C. et al. Bladder pain syndrome/interstitial cystitis is associated with asthma: A case-control study. Neurourol Urodyn 2018; 37: 1773-1778
- 6 Lee C-K, Tsai C-P, Liao T-L. et al. Overactive bladder and bladder pain syndrome/interstitial cystitis in primary Sjögrenʼs syndrome patients: A nationwide population-based study. PLoS One 2019; 14: e0225455
- 7 Wen J-Y, Lo T-S, Chuang Y-C. et al. Risks of interstitial cystitis among patients with systemic lupus erythematosus: A population-based cohort study. Int J Urol 2019; 26: 897-902
- 8 Tirlapur SA, Kuhrt K, Chaliha C. et al. The ‘evil twin syndrome’ in chronic pelvic pain: a systematic review of prevalence studies of bladder pain syndrome and endometriosis. Int J Surg 2013; 11: 233-237
- 9 Warren JW, Jackson TL, Langenberg P. et al. Prevalence of interstitial cystitis in first-degree relatives of patients with interstitial cystitis. Urology 2004; 63: 17-21
- 10 Altman D, Lundholm C, Milsom I. et al. The genetic and environmental contribution to the occurrence of bladder pain syndrome: an empirical approach in a nationwide population sample. Eur Urol 2011; 59: 280-285
- 11 Warren JW, Keay SK, Meyers D. et al. Concordance of interstitial cystitis in monozygotic and dizygotic twin pairs. Urology 2001; 57: 22-25
- 12 Watanabe D, Akiyama Y, Niimi A. et al. Clinical characterization of interstitial cystitis/bladder pain syndrome in women based on the presence or absence of Hunner lesions and glomerulations. Low Urin Tract Symptoms 2021; 13: 139-143
- 13 Allen-Brady K, Rowe K, Cessna M. et al. Significant Linkage Evidence for Interstitial Cystitis/Painful Bladder Syndrome on Chromosome 3. J Urol 2018; 199: 172-177
- 14 Cassão VD, Reis ST, Pimenta R. et al. Single nucleotide polymorphism analysis in interstitial cystitis/painful bladder syndrome. PLoS One 2019; 14: e0215201
- 15 Liu J, Zhang Y, Li S. et al. Bioinformatics analysis of the Hub genes and key pathways of interstitial cystitis pathogenesis. Neurourol Urodyn 2020; 39: 133-143
- 16 Han Y, Chen J, Zhao X. et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 2011; 6: e18286
- 17 Arai T, Fuse M, Goto Y. et al. Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets. J Hum Genet 2018; 63: 543-554
- 18 Gheinani AH, Burkhard FC, Monastyrskaya K. Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome. Cell Mol Life Sci 2013; 70: 3773-3789
- 19 Aydogan TB, Gurpinar O, Eser OK. et al. A new look at the etiology of interstitial cystitis/bladder pain syndrome: extraordinary cultivations. Int Urol Nephrol 2019; 51: 1961-1967
- 20 Price TK, Dune T, Hilt EE. et al. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms. J Clin Microbiol 2016; 54: 1216-1222
- 21 Meriwether KV, Lei Z, Singh R. et al. The Vaginal and Urinary Microbiomes in Premenopausal Women With Interstitial Cystitis/Bladder Pain Syndrome as Compared to Unaffected Controls: A Pilot Cross-Sectional Study. Front Cell Infect Microbiol 2019; 9: 92
- 22 Bhide A, Tailor V, Khullar V. Interstitial cystitis/bladder pain syndrome and recurrent urinary tract infection and the potential role of the urinary microbiome. Post Reprod Health 2020; 26: 87-90
- 23 Jhang J-F, Hsu Y-H, Peng C-W. et al. Epstein-Barr Virus as a Potential Etiology of Persistent Bladder Inflammation in Human Interstitial Cystitis/Bladder Pain Syndrome. J Urol 2018; 200: 590-596
- 24 Salamonowicz-Bodzioch M, Frączkiewicz J, Czyżewski K. et al. Prospective analysis of BKV hemorrhagic cystitis in children and adolescents undergoing hematopoietic cell transplantation. Ann Hematol 2021; 100: 1283-1293
- 25 van der Aa F, Beckley I, de Ridder D. Polyomavirus BK--a potential new therapeutic target for painful bladder syndrome/interstitial cystitis?. Med Hypotheses 2014; 83: 317-320
- 26 Oberbach A, Schlichting N, Feder S. et al. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis. PLoS One 2017; 12: e0175569
- 27 Mumm J-N, Osterman A, Ruzicka M. et al. Urinary Frequency as a Possibly Overlooked Symptom in COVID-19 Patients: Does SARS-CoV-2 Cause Viral Cystitis?. Eur Urol 2020; 78: 624-628
- 28 Lamb LE, Dhar N, Timar R. et al. COVID-19 inflammation results in urine cytokine elevation and causes COVID-19 associated cystitis (CAC). Med Hypotheses 2020; 145: 110375
- 29 Tyagi P, Barclay D, Zamora R. et al. Urine cytokines suggest an inflammatory response in the overactive bladder: a pilot study. Int Urol Nephrol 2010; 42: 629-635
- 30 Gamper M, Regauer S, Welter J. et al. Are mast cells still good biomarkers for bladder pain syndrome/interstitial cystitis?. J Urol 2015; 193: 1994-2000
- 31 Akiyama Y, Maeda D, Morikawa T. et al. Digital quantitative analysis of mast cell infiltration in interstitial cystitis. Neurourol Urodyn 2018; 37: 650-657
- 32 Bahler DW, Swerdlow SH. Clonal Salivary Gland Infiltrates Associated With Myoepithelial Sialadenitis (Sjögrenʼs Syndrome) Begin as Nonmalignant Antigen-Selected Expansions. Blood 1998; 91: 1864-1872
- 33 Doorenspleet ME, Klarenbeek PL, Hair MJH de. et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann Rheum Dis 2014; 73: 756-762
- 34 Pereira M-, Medeiros JA. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J Gastroenterol 2014; 20: 684-698
- 35 Pich D, Mrozek-Gorska P, Bouvet M. et al. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio 2019; 10: e01723-19
- 36 Maeda D, Akiyama Y, Morikawa T. et al. Hunner-Type (Classic) Interstitial Cystitis: A Distinct Inflammatory Disorder Characterized by Pancystitis, with Frequent Expansion of Clonal B-Cells and Epithelial Denudation. PLoS One 2015; 10: e0143316
- 37 Gamper M, Viereck V, Geissbühler V. et al. Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis. BMC Genomics 2009; 10: 199
- 38 Vadas P, Gold M, Perelman B. et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 2008; 358: 28-35
- 39 Becker K, Braquet P, Förster W. Influence of the specific antagonist of PAF-acether, BN 52021, and of Ginkgo extract on the rejection of murine tail skin allografts and the PAF-acether mortality in mice in particular consideration of the role of TXB2. Biomed Biochim Acta 1988; 47: S165-S168
- 40 Jhang J-F, Birder LA, Jiang Y-H. et al. Dysregulation of bladder corticotropin-releasing hormone receptor in the pathogenesis of human interstitial cystitis/bladder pain syndrome. Sci Rep 2019; 9: 19169
- 41 Cao J, Papadopoulou N, Kempuraj D. et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol 2005; 174: 7665-7675
- 42 Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis-new pathobiological insights. Transl Androl Urol 2015; 4: 555-562
- 43 Boucher W, Kempuraj D, Michaelian M. et al. Corticotropin-releasing hormone-receptor 2 is required for acute stress-induced bladder vascular permeability and release of vascular endothelial growth factor. BJU Int 2010; 106: 1394-1399
- 44 Peng C-H, Jhang J-F, Shie J-H. et al. Down regulation of vascular endothelial growth factor is associated with decreased inflammation after intravesical OnabotulinumtoxinA injections combined with hydrodistention for patients with interstitial cystitis--clinical results and immunohistochemistry analysis. Urology 2013; 82: 1452.e1-1452.e6
- 45 Zaslau S, Sparks S, Riggs D. et al. Pentosan polysulfate (Elmiron): in vitro effects on prostate cancer cells regarding cell growth and vascular endothelial growth factor production. Am J Surg 2006; 192: 640-643
- 46 Tudrej KB, Piecha T, Kozłowska-Wojciechowska M. Role of NLRP3 inflammasome in the development of bladder pain syndrome interstitial cystitis. Ther Adv Urol 2019; 11: 1756287218818030
- 47 Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16: 407-420
- 48 Ramachandran RA, Lupfer C, Zaki H. The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Adv Microb Physiol 2018; 72: 65-115
- 49 Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011; 29: 707-735
- 50 Birder L, Andersson K-E. Urothelial signaling. Physiol Rev 2013; 93: 653-680
- 51 Sanchez Freire V, Burkhard FC, Kessler TM. et al. MicroRNAs may mediate the down-regulation of neurokinin-1 receptor in chronic bladder pain syndrome. Am J Pathol 2010; 176: 288-303
- 52 Yu ASL, Cheng MH, Angelow S. et al. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 2009; 133: 111-127
- 53 Rickard A, Dorokhov N, Ryerse J. et al. Characterization of tight junction proteins in cultured human urothelial cells. In Vitro Cell Dev Biol Anim 2008; 44: 261-267
- 54 Neuhaus J, Schulte-Baukloh H, Stolzenburg J-U. et al. Individual receptor profiling as a novel tool to support diagnosis of bladder pain syndrome/interstitial cystitis (BPS/IC). World J Urol 2012; 30: 693-700
- 55 Hurst RE, Moldwin RM, Mulholland SG. Bladder defense molecules, urothelial differentiation, urinary biomarkers, and interstitial cystitis. Urology 2007; 69: 17-23
- 56 Wu L, Zhang J, Zhou F. et al. Increased Transient Receptor Potential Melastatin 8 Expression in the Development of Bladder Pain in Patients With Interstitial Cystitis/Bladder Pain Syndrome. Urology 2020; 146: 301.e1-301.e6
- 57 Overholt TL, Matthews CA, Evans RJ. et al. Small Fiber Polyneuropathy Is Associated With Non-Bladder-Centric Interstitial Cystitis/Bladder Pain Syndrome Patients. Female Pelvic Med Reconstr Surg 2020;
- 58 Oaklander AL, Herzog ZD, Downs HM. et al. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain 2013; 154: 2310-2316
- 59 Greef BTA de, Hoeijmakers JGJ, Geerts M. et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain 2019; 142: 263-275
- 60 Ward EP, Bartolone SN, Chancellor MB. et al. Proteomic analysis of bladder biopsies from interstitial cystitis/bladder pain syndrome patients with and without Hunner's lesions reveals differences in expression of inflammatory and structural proteins. BMC Urol 2020; 20: 180