Synthesis 2022; 54(04): 1108-1114 DOI: 10.1055/a-1653-2685
SN 2′ Defluorinative Allylation of Trifluoromethylalkenes with Allylsilanes
Meng-Meng Sun
,
Haidong Liu
,
,
This work was supported by the National Natural Science Foundation of China (21801131 & 21871138), the ‘Thousand Young Talents Program’ of China, and the ‘Jiangsu Specially-Appointed Professor Plan’.
Abstract
An SN 2′ defluorinative allylation of trifluoromethylalkenes with readily available allylsilanes to access homoallyl gem -difluoroalkenes is reported. The reaction is triggered by a catalytic amount of TBAF, with the extruded fluoride in the reaction serving as a sustainable activator for organosilanes. The high efficiency, good functional group tolerance, and mild reaction conditions underline the potential of this method in synthetic chemistry.
Key words
gem -difluoroalkene -
trifluoromethylalkene -
allylsilane -
C–F bond cleavage -
allylation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1653-2685.
Supporting Information
Publication History
Received: 31 August 2021
Accepted after revision: 24 September 2021
Accepted Manuscript online: 24 September 2021
Article published online: 11 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
For selected examples, see:
1a
Lim MH,
Kim HO,
Moon HR,
Chun MW,
Jeong LS.
Org. Lett. 2002; 4: 529
1b
Pan Y,
Qiu J,
Silverman RB.
J. Med. Chem. 2003; 46: 5292
1c
Fujii K,
Nakamoto Y,
Hatano K,
Kanetsuki Y.
JP Patent 2006016331 A, 2006
For selected examples, see:
2a
Ma Q,
Wang Y,
Tsui GC.
Angew. Chem. Int. Ed. 2020; 59: 11293
2b
Lu X,
Wang Y,
Zhang B,
Pi J.-J,
Wang X.-W,
Gong T.-J,
Xiao B,
Fu Y.
J. Am. Chem. Soc. 2017; 139: 12632
2c
Sakaguchi H,
Uetake Y,
Ohashi M,
Niwa T,
Ogoshi S,
Hosoya T.
J. Am. Chem. Soc. 2017; 139: 12855
3a
Yuan K,
Feoktistova T,
Cheong PH.-Y,
Altman RA.
Chem. Sci. 2021; 12: 1363
3b
Liu C,
Zhu C,
Cai Y,
Jiang H.
Angew. Chem. Int. Ed. 2021; 60: 12038
3c
Zubkov MO,
Kosobokov MD,
Levin VV,
Kokorekin VA,
Korlyukov AA,
Hu J,
Dilman AD.
Chem. Sci. 2020; 11: 737
3d
Zhu C,
Song S,
Zhou L,
Wang D.-X,
Feng C,
Loh T.-P.
Chem. Commun. 2017; 53: 9482
For a review, see:
4a
Liu C,
Zeng H,
Zhu C,
Jiang H.
Chem. Commun. 2020; 56: 10442
For recent examples, see:
4b
Lin TY,
Pan Z,
Tu Y,
Zhu S,
Wu H.-H,
Liu Y,
Li Z,
Zhang J.
Angew. Chem. Int. Ed. 2020; 59: 22957
4c
Liu C,
Zhu C,
Cai Y,
Yang Z,
Zeng H,
Chen F,
Jiang H.
Chem. Eur. J. 2020; 26: 1953
5
Fuqua SA,
Duncan WG,
Silverstein RM.
Tetrahedron Lett. 1964; 1461
For a review, see:
6a
Zhang X,
Cao S.
Tetrahedron Lett. 2017; 58: 375
For recent examples, see:
6b
Wang S,
Cheng B.-Y,
Sršen M,
König H.
J. Am. Chem. Soc. 2020; 142: 7524
7
Fujita T,
Fuchibe K,
Ichikawa J.
Angew. Chem. Int. Ed. 2019; 58: 390
8a
Bégué J.-P,
Bonnet-Delpon D,
Rock MH.
Tetrahedron Lett. 1995; 36: 5003
8b
Fuchikami T,
Shibata Y,
Suzuki Y.
Tetrahedron Lett. 1986; 27: 3173
9a
Jang YJ,
Rose D,
Mirabi B,
Lautens M.
Angew. Chem. Int. Ed. 2018; 57: 16147
9b
Zhang C,
Lin Z,
Zhu Y,
Wang C.
J. Am. Chem. Soc. 2021; 143: 11602
9c
Lan Y,
Yang F,
Wang C.
ACS Catal. 2018; 8: 9245
9d
Lin Z,
Lan Y,
Wang C.
ACS Catal. 2019; 9: 775
9e
Lu X,
Wang X.-X,
Gong T.-J,
Pi J.-J,
He S.-J,
Fu Y.
Chem. Sci. 2019; 10: 809
9f
Kojima R,
Akiyama S,
Ito H.
Angew. Chem. Int. Ed. 2018; 57: 7196
9g
Gao P,
Yuan C,
Zhao Y,
Shi Z.
Chem 2018; 4: 2201
10a
Lang SB,
Wiles RJ,
Kelly CB,
Molander GA.
Angew. Chem. Int. Ed. 2017; 56: 15073
10b
Yue W.-J,
Day CS,
Martin R.
J. Am. Chem. Soc. 2021; 143: 6395
10c
Xia P.-J,
Song D,
Ye Z.-P,
Hu Y.-Z,
Xiao J.-A,
Xiang H.-Y,
Chen X.-Q,
Yang H.
Angew. Chem. Int. Ed. 2020; 59: 6706
10d
Xu W,
Jiang H,
Leng J,
Ong HW,
Wu J.
Angew. Chem. Int. Ed. 2020; 59: 4009
10e
Guo Y.-Q,
Wang R,
Song H,
Liu Y,
Wang Q.
Org. Lett. 2020; 22: 709
11
Gao X.-T,
Zhang Z,
Wang X,
Tian J.-S,
Xie S.-L,
Zhou F,
Zhou J.
Chem. Sci. 2020; 11: 10414
12a
Bao W,
Kossen H,
Schneider U.
J. Am. Chem. Soc. 2017; 139: 4362
12b
García-Ruiz C,
Chen JL.-Y,
Sandford C,
Feeney K,
Lorenzo P,
Berionni G,
Mayr H,
Aggarwal VK.
J. Am. Chem. Soc. 2017; 139: 15324
12c
Luo C,
Bandar JS.
J. Am. Chem. Soc. 2019; 141: 14120
12d
Mizuno K,
Ikeda M,
Otsuji Y.
Tetrahedron Lett. 1985; 26: 461
13
Zhu C,
Sun M.-M,
Chen K,
Feng C.
Angew. Chem. Int. Ed. 2021; 60: 20237
14a
Tian P,
Feng C,
Loh T.-P.
Nat. Commun. 2015; 6: 7472
14b
Zhou L,
Zhu C,
Bi P,
Feng C.
Chem. Sci. 2019; 10: 1114
14c
Zhu C,
Zhang Y.-F,
Liu Z.-Y,
Zhou L,
Liu H,
Feng C.
Chem. Sci. 2019; 10: 6721
14d
Tang L,
Liu Z.-Y,
She W,
Feng C.
Chem. Sci. 2019; 10: 8701
14e
Zhu C,
Liu Z.-Y,
Tang L,
Zhang H,
Zhang Y.-F,
Walsh PJ,
Feng C.
Nat. Commun. 2020; 11: 4860
15
Kawai M,
Onaka M,
Izumi Y.
Chem. Lett. 1986; 15: 381