Subscribe to RSS
DOI: 10.1055/a-1665-4650
Covalently Templated Syntheses of Mechanically Interlocked Molecules
The authors would like to thank the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO-CW, ECHO grant number 711.012.007 to J.v.M).
This review is dedicated to the 70th birthday of Professor Ben L. Feringa
Abstract
Mechanically interlocked molecules (MiMs), such as catenanes and rotaxanes, exhibit unique properties due to the mechanical bond which unites their components. The translational and rotational freedom present in these compounds may be harnessed to create stimuli-responsive MiMs, which find potential application as artificial molecular machines. Mechanically interlocked structures such as lasso peptides have also been found in nature, making MiMs promising albeit elusive targets for drug discovery. Although the first syntheses of MiMs were based on covalent strategies, approaches based on non-covalent interactions rose to prominence thereafter and have remained dominant. Non-covalent strategies are generally short and efficient, but do require particular structural motifs which are difficult to alter. In a covalent approach, MiMs can be more easily modified while the components may have increased rotational and translational freedom. Both approaches have complementary merits and combining the unmatched efficiency of non-covalent approaches with the scope of covalent syntheses may open up vast opportunities. In this review, recent covalently templated syntheses of MiMs are discussed to show their complementarity and anticipate future developments in this field.
1 Introduction
2 Tetrahedral Templates
2.1 A Carbonate Template for Non-Rusty Catenanes
2.2 All-Benzene Catenanes on a Silicon Template
2.3 Backfolding from Quaternary Carbon
3 Planar Templates
3.1 Rotaxanes Constructed in a Ring
3.2 Hydrindacene as a Dynamic Covalent Template
3.3 Templating on Tri- and Tetrasubstituted Benzenes
4 Conclusion
Key words
mechanically interlocked molecules - covalent template-directed synthesis - rotaxanes - catenanes - artificial molecular machinesPublication History
Received: 30 August 2021
Accepted after revision: 17 September 2021
Accepted Manuscript online:
08 October 2021
Article published online:
15 November 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines . John Wiley & Sons; Hoboken: 2017
- 2 Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ. ACS Nano 2015; 9: 7746
- 3 Moulin E, Faour L, Carmona-Vargas CC, Giuseppone N. Adv. Mater. 2020; 32: 1906036
- 4 Maksimov MO, Pan SJ, Link AJ. Nat. Prod. Rep. 2012; 29: 996
- 5 Taylor WR. Nature 2000; 406: 916
- 6 Dean FB, Stasiak A, Koller T, Cozzarelli NR. J. Biol. Chem. 1985; 260: 4975
- 7 Schill G, Lüttringhaus A. Angew. Chem., Int. Ed. Engl. 1964; 3: 546
- 8 Schill G, Zollenkopf H. Justus Liebigs Ann. Chem. 1969; 721: 53
- 9 Rißler K, Schill G, Fritz H, Vetter W. Angew. Chem., Int. Ed. Engl. 1981; 20: 187
- 10a Schill G. Catenanes, Rotaxanes and Knots . Academic Press; New York: 1971
- 10b Brückner R. Eur. J. Org. Chem. 2019; 2019: 3289
- 11 Dietrich-Buchecker CO, Sauvage J.-P, Kintzinger JP. Tetrahedron Lett. 1983; 24: 5095
- 12 Ashton PR, Grognuz M, Slawin AM. Z, Stoddart JF, Williams DJ. Tetrahedron Lett. 1991; 32: 6235
- 13 Hunter CA. J. Am. Chem. Soc. 1992; 114: 5303
- 14 Aucagne V, Hänni KD, Leigh DA, Lusby PJ, Walker DB. J. Am. Chem. Soc. 2006; 128: 2186
- 15 Ashton PR, Glink PT, Stoddart JF, Tasker PA, White AJ. P, Williams DJ. Chem. Eur. J. 1996; 2: 729
- 16 Li H, Fahrenbach AC, Dey SK, Basu S, Trabolsi A, Zhu Z, Botros YY, Stoddart JF. Angew. Chem. Int. Ed. 2010; 49: 8260
- 17 McConnell AJ, Beer PD. Chem. Eur. J. 2011; 17: 2724
- 18 Ciaccia M, Núñez-Villanueva D, Hunter CA. J. Am. Chem. Soc. 2019; 141: 10862
- 19a Nierengarten I, Meichsner E, Holler M, Pieper P, Deschenaux R, Delavaux-Nicot B, Nierengarten J.-F. Chem. Eur. J. 2018; 24: 169
- 19b Nierengarten I, Nierengarten J.-F. ChemistryOpen 2020; 9: 393
- 19c Rémy M, Nierengarten I, Park B, Holler M, Hahn U, Nierengarten J.-F. Chem. Eur. J. 2021; 27: 8492
- 20 Lancia F, Ryabchun A, Katsonis N. Nat. Rev. Chem. 2019; 3: 536
- 21 Perutz MF. Nature 1970; 228: 726
- 22 Ünsal Ö, Godt A. Chem. Eur. J. 1999; 5: 1728
- 23 Duda S, Godt A. Eur. J. Org. Chem. 2003; 2003: 3412
- 24 Godt A. Eur. J. Org. Chem. 2004; 2004: 1639
- 25 Sauvage JP. Acc. Chem. Res. 1990; 23: 319
- 26 Godt A, Duda S, Ünsal Ö, Thiel J, Härter A, Roos M, Tschierske C, Diele S. Chem. Eur. J. 2002; 8: 5094
- 27 Shah RS, Duda S, Müller B, Godt A, Malik A. J. Am. Chem. Soc. 2003; 125: 5408
- 28 Schill G, Schweickert N, Fritz H, Vetter W. Angew. Chem., Int. Ed. Engl. 1983; 22: 889
- 29 Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science 2019; 365: 272
- 30 Segawa Y, Kuwayama M, Itami K. Org. Lett. 2020; 22: 1067
- 31 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
- 32 Steemers L, Wanner MJ, Lutz M, Hiemstra H, van Maarseveen JH. Nat. Commun. 2017; 8: 15392
- 33 Wanner MJ, Steemers L, Uiterweerd MT, Klijn RS, Ehlers AW, van Maarseveen JH. Chem. Eur. J. 2018; 24: 13114
- 34 Schill G, Beckmann W, Vetter W. Chem. Ber. 1980; 113: 941
- 35 Steemers L, Wanner MJ, van Leeuwen BR. C, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2018; 2018: 874
- 36 Pilon S, Jørgensen SI, van Maarseveen JH. Chem. Eur. J. 2021; 27: 2310
- 37 Hiratani K, Suga JI, Nagawa Y, Houjou H, Tokuhisa H, Numata M, Watanabe K. Tetrahedron Lett. 2002; 43: 5747
- 38 Nagawa Y, Fukazawa N, Suga JI, Horn M, Tokuhisa H, Hiratani K, Watanabe K. Tetrahedron Lett. 2000; 41: 9261
- 39 Kameta N, Hiratani K, Nagawa Y. Chem. Commun. 2004; 466
- 40 Hiratani K, Kaneyama M, Nagawa Y, Koyama E, Kanesato M. J. Am. Chem. Soc. 2004; 126: 13568
- 41 Nagawa Y, Suga JI, Hiratani K, Koyama E, Kanesato M. Chem. Commun. 2005; 749
- 42 Kawai H, Umehara T, Fujiwara K, Tsuji T, Suzuki T. Angew. Chem. Int. Ed. 2006; 45: 4281
- 43 Kawai H. Bull. Chem. Soc. Jpn. 2015; 88: 399
- 44 Kawai H, Katoono R, Fujiwara K, Tsuji T, Suzuki T. Chem. Eur. J. 2005; 11: 815
- 45 Umehara T, Kawai H, Fujiwara K, Suzuki T. J. Am. Chem. Soc. 2008; 130: 13981
- 46 Sugino H, Kawai H, Umehara T, Fujiwara K, Suzuki T. Chem. Eur. J. 2012; 18: 13722
- 47 Höger S, Meckenstock A.-D, Pellen H. J. Org. Chem. 1997; 62: 4556
- 48 Becker K, Lagoudakis PG, Gaefke G, Höger S, Lupton JM. Angew. Chem. Int. Ed. 2007; 46: 3450
- 49 Cantin K, Lafleur-Lambert A, Dufour P, Morin J.-F. Eur. J. Org. Chem. 2012; 2012: 5335
- 50 Fischer M, Höger S. Tetrahedron 2003; 59: 9441
- 51 Schweez C, Shushkov P, Grimme S, Höger S. Angew. Chem. Int. Ed. 2016; 55: 3328
- 52 Schweez C, Höger S. Chem. Eur. J. 2018; 24: 12006
- 53 Steemers L, Wanner MJ, Ehlers AW, Hiemstra H, van Maarseveen JH. Org. Lett. 2017; 19: 2342
- 54 Cornelissen MD, Pilon S, Steemers L, Wanner MJ, Frölke S, Zuidinga E, Jørgensen SI, van der Vlugt JI, van Maarseveen JH. J. Org. Chem. 2020; 85: 3146
- 55 Pilon S, Jørgensen S. I., van Maarseveen J. H. ACS Org. Inorg. Au, 2021, in press, https://doi.org/10.1021/acsorginorgau.1c00017
- 56 Chambron J.-C, Sauvage J.-P, Mislow K, De Cian A, Fischer JA. Chem. Eur. J. 2001; 7: 4085