CC BY-NC-ND 4.0 · Laryngorhinootologie 2022; 101(S 01): S79-S89
DOI: 10.1055/a-1671-1825
Referat

Innovative Technologien für optimiertes künstliches Sehen

Article in several languages: deutsch | English
Peter Walter

Zusammenfassung

Trotz deutlicher Fortschritte in der Therapie schwerer Augenerkrankungen können bestimmte Formen der Erblindung bis heute nicht geheilt oder gebessert werden. Dazu gehört beispielsweise die Retinitis pigmentosa, eine erbliche Degeneration der Photorezeptoren. Technologieansätze mit implantierbaren Sehprothesen, deren Prinzip in einer elektrischen Stimulation verbleibender Nervenzellen in der Retina oder im Cortex, wurden bereits bei einer Reihe von Patienten mit begrenzten Ergebnissen erprobt. Neue Befunde in der Biologie der Erkrankungen aber auch neue technologische Entwicklungen machen hier Hoffnung auf bessere Ergebnisse in der Zukunft.



Publication History

Article published online:
23 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Aghaizu N, Kruczek K, Gonzalez-Cordero A, Ali R, Pearson R, Dunnett S, Bjorklund A. 2017; 231: 191-223 DOI: 10.1016/bs.pbr.2017.01.001.
  • 2 Aisenbrey S, Bartz-Schmidt KU, Walter P, Hilgers RD, Ayertey H, Szurman P, Thumann G. 2007; 125: 1367-1372 DOI: 10.1001/archopht.125.10.1367.
  • 3 Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, Thumann G. 2006; 124: 183-188 DOI: 10.1001/archopht.124.2.183.
  • 4 Al-Atabany W, Degenaar P. 2011; 432-435
  • 5 Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P. 2013; 60: 781-791 DOI: 10.1109/TBME.2011.2177498.
  • 6 ALGVERE P, BERGLIN L, GOURAS P, SHENG Y. 1994; 232: 707-716 DOI: 10.1007/BF00184273.
  • 7 Ayton L, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, Petoe M. 2020; 131: 1383-1398 DOI: 10.1016/j.clinph.2019.11.029.
  • 8 Ayton L, Blamey P, Guymer R, Luu C, Nayagam D, Sinclair N, Res BVA. 2014 9. 10.1371/journal.pone.0115239
  • 9 Barrett J, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Visual Neuroscience 2014; 31: 345-354 DOI: 10.1017/S0952523814000212.
  • 10 Barriga-Rivera A, Suaning G. Visual prostheses, optogenetics, stem cell and gene therapies: splitting the cake. Neural Regeneration Research 2018; 13: 805-806 10.4103/1673-5374.232469
  • 11 Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Muller F. Pharmacological Analysis of Intrinsic Neuronal Oscillations in rd10 Retina. Plos One. 2014 9. 10.1371/journal.pone.0099075
  • 12 Busskamp V, Roska B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology 2011; 21: 942-946 DOI: 10.1016/j.conb.2011.06.001.
  • 13 Cideciyan A, Jacobson S. Leber Congenital Amaurosis (LCA): Potential for Improvement of Vision. Investigative Ophthalmology & Visual Science 2019; 60: 1680-1695 10.1167/iovs.19-26672
  • 14 da Cruz L, Dorn J, Humayun M, Dagnelie G, Handa J, Barale P, Grp AIS. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology 2016; 123: 2248-2254 DOI: 10.1016/j.ophtha.2016.06.049.
  • 15 Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V. Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences. 2019 20. 10.3390/ijms20102542
  • 16 Dong N, Sun X, Degenaar P, Kollias N, Choi B, Zeng H, Mandelis A. IMPLANTABLE OPTRODE DESIGN FOR OPTOGENETIC VISUAL CORTICAL PROSTHESIS. Photonic Therapeutics and Diagnostics Viii, Pts 1 and 2 2012; 82076a 10.1117/12.912386
  • 17 Duret F, Brelen M, Lambert V, Gerard B, Delbeke J, Veraart C. Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restorative Neurology and Neuroscience 2006; 24: 31-40
  • 18 Erbsloh A, Viga R, Walter P, Kokozinski R, Grabmaier A, Soc IC. Implementation of a Charge-Controlled Stimulation Method in a Monolithic Integrated CMOS-Chip for Excitation of Retinal Neuron Cells. 2017
  • 19 Fujikado T, Kamei M, Kishima H, Morimoto T, Kanda H, Sakaguchi H, Ozawa M. One-Year Outcomes of 49-Channel Suprachoroidal-Transretinal Stimulation (STS) Retinal Prosthesis in Patients with Advanced Retinitis Pigmentosa. Investigative Ophthalmology & Visual Science. 2016 57.
  • 20 Garg S, Federman J. Optogenetics, visual prosthesis and electrostimulation for retinal dystrophies. Current Opinion in Ophthalmology 2013; 24: 407-414 DOI: 10.1097/ICU.0b013e328363829b.
  • 21 Gekeler K, Bartz-Schmidt K, Sachs H, MacLaren R, Stingl K, Zrenner E, Gekeler F. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Current Opinion in Ophthalmology 2018; 29: 239-247 DOI: 10.1097/ICU.0000000000000467.
  • 22 Haselier C, Biswas S, Rosch S, Thumann G, Muller F, Walter P. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina. Plos One. 2017 12. 10.1371/journal.pone.0190048
  • 23 Lee V, Nau A, Laymon C, Chan K, Rosario B, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Frontiers in Human Neuroscience 2014; 8 10.3389/fnhum.2014.00291
  • 24 Lohmann TK, Haiss F, Schaffrath K, Schnitzler AC, Waschkowski F, Barz C, Walter P. The very large electrode array for retinal stimulation (VLARS)?A concept study. Journal of Neural Engineering. 2019 16. 10.1088/1741-2552/ab4113
  • 25 Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, Roessler G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 2012; 26: 502-509 DOI: 10.1038/eye.2012.35.
  • 26 Moisseiev E, Mannis M. Evaluation of a Portable Artificial Vision Device Among Patients With Low Vision. Jama Ophthalmology 2016; 134: 748-752 DOI: 10.1001/jamaophthalmol.2016.1000.
  • 27 Mokwa W, Goertz A, Koch C, Krisch I, Trieu HK, Walter P. Ieee Intraocular Epiretinal Prosthesis to Restore Vision in Blind Humans. In 2008 30th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2008; Vols 1-8 pp 5790- +) 
  • 28 Montes VR, Gehlen J, Luck S, Mokwa W, Muller F, Walter P, Offenhausser A. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device – A Proof of Concept. Frontiers in Neuroscience 2019; 13: 19 10.3389/fnins.2019.00367
  • 29 Nishida K, Sakaguchi H, Kamei M, Cecilia-Gonzalez C, Terasawa Y, Velez-Montoya R, Quiroz-Mercado H. Visual Sensation by Electrical Stimulation Using a New Direct Optic Nerve Electrode Device. Brain Stimulation 2015; 8: 678-681 DOI: 10.1016/j.brs.2015.03.001.
  • 30 Rizzo J, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investigative Ophthalmology & Visual Science 2003; 44: 5362-5369 10.1167/iovs.02-0817
  • 31 Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, Humayun MS. ADVERSE EVENTS OF THE ARGUS II RETINAL PROSTHESIS Incidence, Causes, and Best Practices for Managing and Preventing Conjunctival Erosion. Retina-the Journal of Retinal and Vitreous Diseases 2020; 40: 303-311 10.1097/iae.0000000000002394
  • 32 Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Walter P. Implantation and Explantation of a Wireless Epiretinal Retina Implant Device: Observations during the EPIRET3 Prospective Clinical Trial. Investigative Ophthalmology & Visual Science 2009; 50: 3003-3008 10.1167/iovs.08-2752
  • 33 Rosenfeld J. The Development of a Wireless Multi-electrode Cortical Prosthesis for Restoration of Vision in Blind Individuals. Journal of Neurosurgery 2015; 123: A486-A486
  • 34 Russell S, Bennett J, Wellman J, Chung D, Yu Z, Tillman A, Maguire A. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390: 849-860 DOI: 10.1016/S0140-6736(17)31868-8.
  • 35 Schaffrath K, Schellhase H, Walter P, Augustin A, Chizzolini M, Kirchhof B, Rizzo S. One-Year Safety and Performance Assessment of the Argus II Retinal Prosthesis: A Postapproval Study. Jama Ophthalmology 2019; 137: 896-902 DOI: 10.1001/jamaophthalmol.2019.1476.
  • 36 Shivdasani M, Sinclair N, Dimitrov P, Varsamidis M, Ayton L, Luu C, Consortium BVA. Factors Affecting Perceptual Thresholds in a Suprachoroidal Retinal Prosthesis. Investigative Ophthalmology & Visual Science 2014; 55: 6467-6481 DOI: 10.1167/iovs.14-14396.
  • 37 Stingl K, Bartz-Schmidt K, Besch D, Chee C, Cottriall C, Gekeler F, Zrenner E. Subretinal Visual Implant Alpha IMS – Clinical trial interim report. Vision Research 2015; 111: 149-160 DOI: 10.1016/j.visres.2015.03.001.
  • 38 Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, Zrenner E. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Frontiers in Neuroscience. 2017 11. 10.3389/fnins.2017.00445
  • 39 Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P, Bartz-Schmidt KU. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Archives of Ophthalmology 2000; 118: 1350-1355
  • 40 Tibbetts M, Samuel M, Chang T, Ho A. Stem cell therapy for retinal disease. Current Opinion in Ophthalmology 2012; 23: 226-234 DOI: 10.1097/ICU.0b013e328352407d.
  • 41 Trieu HK, Goertz M, Koch C, Mokwa W, Walter P. Implants for Epiretinal Stimulation of Retinitis Pigmentosa Patients. In: O. Dossel & W. C. Schlegel (Eds.), World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 11: Biomedical Engineering for Audiology, Ophthalmology, Emergency and Dental Medicine 2009; Vol. 25 pp. 80-+
  • 42 Veraart C, Duret F, Brelen M, Delbeke J. ieee Vision rehabilitation with the optic nerve visual prosthesis. Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2004; Vols 1-7: 4163-4164
  • 43 Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J. Vision rehabilitation in the case of blindness. Expert Review of Medical Devices 2004; 1: 139-153 10.1586/17434440.1.1.139
  • 44 Walter P. 2016. A fully intraocular approach for a bi-directional retinal prosthesis. In V. P. Gabel (Ed.), Artificial Vision. pp. 151-161 Springer; Heidelberg, New York:
  • 45 Walter P. Future Developments in Retinal Prostheses. Klinische Monatsblatter Fur Augenheilkunde 2016; 233: 1238-1243 DOI: 10.1055/s-0042-115411.
  • 46 Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C, Laube T, Roessler G. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomedical Engineering Online. 2014 13. 1110.1186/1475-925x-13-11