Subscribe to RSS
DOI: 10.1055/a-1671-8497
Tandem Nickel-Catalyzed Dimerization/(4+2) Cycloaddition of Terminal Alkynes with Four-Membered Ring Ketones
We thank the University of Liverpool (studentship to M.B.) for financial support.
Abstract
Controlling the behavior of terminal alkynes in metal-catalyzed intermolecular tandem reactions is a formidable challenge despite the potential advantage offered by these strategies in modern synthesis. Herein, we describe that a nickel catalyst enables a tandem process involving the rapid dimerization of terminal alkynes into 1,3-enynes and the cycloaddition of these intermediates with an azetidinone, an oxetanone or benzocyclobutenones. Significantly, the slow or sequential addition of reagents and catalysts is not required to orchestrate their reactivity. These results are in stark contrast with previous cycloadditions of terminal alkynes with strained four-membered ring substrates, which previously led to oligomerization or cyclotrimerization, except in the case of tert-butylacetylene.
Key words
carbon–carbon bond activation - nickel - catalysis - azetidinone - oxetanone - benzocyclobutenones - tandemSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1671-8497.
- Supporting Information
Publication History
Received: 20 September 2021
Accepted after revision: 18 October 2021
Accepted Manuscript online:
18 October 2021
Article published online:
22 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
- 1b Brauch S, van Berkel SS, Westermann B. Chem. Soc. Rev. 2013; 42: 4948
- 2a Hoberg H, Oster BW. Synthesis 1982; 324
- 2b Hong P, Yamazaki H. Tetrahedron Lett. 1977; 18: 1333
- 2c Doyle MP, Shanklin MS. Organometallics 1994; 13: 1081
- 2d Costa M, Dias FS, Chiusoli GP, Gazzola GL. J. Organomet. Chem. 1995; 488: 47
- 2e Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
- 2f Zhao L, de Meijere A. Adv. Synth. Catal. 2006; 348: 2484
- 2g Oberg KM, Lee EE, Rovis T. Tetrahedron 2009; 65: 5056
- 2h Liu Y, Yan X, Yang N, Xi C. Catal. Commun. 2011; 12: 489
- 2i Zhong Y, Spahn NA, Stolley RM, Nguyen H, Louie J. Synlett 2015; 26: 307
- 3a Chalk AJ. J. Am. Chem. Soc. 1972; 94: 5928
- 3b Huang D.-J, Sambaiah T, Cheng C.-H. New J. Chem. 1998; 1147
- 3c Sambaiah T, Huang D.-J, Cheng C.-H. J. Chem. Soc., Perkin Trans. 1 2000; 195
- 3d Ikeda S.-i, Mori N, Sato Y. J. Am. Chem. Soc. 1997; 119: 4779
- 3e Mori N, Ikeda S.-i, Sato Y. J. Am. Chem. Soc. 1999; 121: 2722
- 3f Ikeda S.-i, Kondo H, Mori N. Chem. Commun. 2000; 815
- 3g Takeuchi R, Nakaya Y. Org. Lett. 2003; 5: 3659
- 3h Hilt G, Hess W, Vogler T, Hengst C. J. Organomet. Chem. 2005; 690: 5170
- 3i Ogoshi S, Ikeda H, Kurosawa H. Angew. Chem. Int. Ed. 2007; 46: 4930
- 3j Tanaka K, Takahashi Y, Suda T, Hirano M. Synlett 2008; 1724
- 3k Lane TK, D’Souza BR, Louie J. J. Org. Chem. 2012; 77: 7555
- 3l Wang C, Wang D, Xu F, Pan B, Wan B. J. Org. Chem. 2013; 78: 3065
- 3m Mori T, Akioka Y, Kawahara H, Ninokata R, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2014; 53: 10434
- 4a Saito S, Masuda M, Komagawa S. J. Am. Chem. Soc. 2004; 126: 10540
- 4b Komagawa S, Saito S. Angew. Chem. Int. Ed. 2006; 45: 2446
- 4c Komagawa S, Takeuchi K, Sotome I, Azumaya I, Masu H, Yamasaki R, Saito S. J. Org. Chem. 2009; 74: 3323
- 5a Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 5b Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
- 5c Deng L, Dong G. Trends Chem. 2020; 2: 183
- 5d Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 6 Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
- 7a Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1991; 113: 2771
- 7b Auvinet AL, Harrity JP. Angew. Chem. Int. Ed. 2011; 50: 2769
- 7c Stalling T, Harker WR. R, Auvinet AL, Cornell EJ, Harrity JP. Chem. Eur. J. 2015; 21: 2701
- 8a Juliá-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
- 8b Xu T, Dong G. Angew. Chem. Int. Ed. 2012; 51: 7567
- 8c Chen P.-H, Xu T, Dong G. Angew. Chem. Int. Ed. 2014; 53: 1674
- 8d Lu G, Fang C, Xu T, Dong G, Liu P. J. Am. Chem. Soc. 2015; 137: 8274
- 8e Zhang J, Wang X, Xu T. Nat. Commun. 2021; 12: 3022
- 9a Ho KY. T, Aïssa C. Chem. Eur. J. 2012; 18: 3486
- 9b Kumar P, Louie J. Org. Lett. 2012; 14: 2026
- 9c Ishida N, Yuhki T, Murakami M. Org. Lett. 2012; 14: 3898
- 9d Thakur A, Evangelista JL, Kumar P, Louie J. J. Org. Chem. 2015; 80: 9951
- 9e Barday M, Ho KY. T, Halsall CT, Aïssa C. Org. Lett. 2016; 18: 1756
- 9f Barday M, Janot C, Clare D, Carr-Knox C, Higginson B, Aïssa C. Synthesis 2017; 49: 3582
- 9g Elwrfalli F, Esvan YJ, Robertson CM, Aïssa C. Chem. Commun. 2019; 55: 497
- 10 For a recent review, see: Trost BM, Masters JT. Chem. Soc. Rev. 2016; 45: 2212
- 11 Ogoshi S, Ueta M, Oka M.-a, Kurosawa H. Chem. Commun. 2004; 2732
- 12 Signals indicative of decomposition appeared in the 13C NMR spectrum during the long acquisition required to see the broad signals that are characteristic of 3af.
- 13a Moser WH, Sun L, Huffman JC. Org. Lett. 2001; 3: 3389
- 13b Eastham SA, Ingham SP, Hallett MR, Herbert J, Quayle P, Raftery J. Tetrahedron Lett. 2006; 47: 2299
- 14 Benzocyclobutenones that possess substituents on the four-membered ring but not on the aromatic ring failed to undergo the tandem reaction depicted in Scheme 6.
- 15 Guo J.-H, Liu Y, Lin X.-X, Tang T.-M, Wang B.-Q, Hu P, Zhao K.-Q, Song F, Shi Z.-H. Angew. Chem. Int. Ed. 2021; 60: 19079
- 16 After five minutes of reaction, alkyne/1,3-enyne = 1:1.4 by method C; alkyne/1,3-enyne = 1:1.8 by method D.
- 17 Maciejewski H, Sydor A, Marciniec B, Kubicki M, Hitchcock PB, Wawrzyńczak A, Dutkiewicz M, Fiedorow R, Szubert K, Kurdykowska M, Celka L. Inorg. Chim. Acta 2006; 359: 2989
- 18 Mynott R, Mollbach A, Wilke G. J. Organomet. Chem. 1980; 199: 107
- 19 Ligand exchange of PtBu3 from [Ni(PtBu3)2] is sufficiently slow that separate resonances for this complex and the free ligand can be observed at room temperature at 97.1 ppm and 62.3 ppm, respectively.
- 20 Tolman CA. J. Am. Chem. Soc. 1970; 92: 2956
- 21 Huang C, He R, Shen W, Li M. J. Mol. Model. 2015; 21: 135
- 22a Li Y, Lin Z. Organometallics 2013; 32: 3003
- 22b A mono-phosphine complex might be preferred in the case of benzocyclobutenones (see reference 15).
- 23 Steves JA, Preger Y, Martinelli JR, Welch CJ, Root TW, Hawkins JM, Stahl SS. Org. Process Res. Dev. 2015; 19: 1548
- 24 Fandrick DR, Reeves JT, Tan Z, Lee H, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2009; 11: 5458
- 25 Denmark SE, Tymonko SA. J. Am. Chem. Soc. 2005; 127: 8004
- 26 Chen P.-H, Savage NA, Dong G. Tetrahedron 2014; 70: 4135
- 27 Qin Y, Zhan J.-L, Shan T.-t, Xu T. Tetrahedron Lett. 2019; 60: 925
For general reviews, see:
Selected examples:
For selected recent reviews on metal-catalyzed C–C bond activation, see:
For other selected leading examples of intramolecular cycloadditions of alkenes, alkynes, and 1,3-dienes with other metal catalysts, see: