Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(21): 4753-4763
DOI: 10.1055/a-1672-6284
DOI: 10.1055/a-1672-6284
special topic
Asymmetric C–H Functionalization
Enantioselective C–H Alkylation of N-Arylbenzamides with Vinyl Ethers Catalyzed by an Iridium/Chiral Phosphoramidite–Olefin Complex
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. JP19H02721 and JP20J23499. K.S. thanks the JSPS for a Research Fellowship for Young Scientists.
Abstract
Chiral phosphoramidite–olefin hybrid ligands were found to be effective in the iridium-catalyzed asymmetric alkylation of N-arylbenzamides with vinyl ethers. The reaction is catalyzed by a hydroxoiridium catalyst coordinated with the hybrid ligand to give the corresponding products in high yields with high branch selectivity and enantioselectivity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1672-6284.
- Supporting Information
Publication History
Received: 27 September 2021
Accepted after revision: 19 October 2021
Accepted Manuscript online:
19 October 2021
Article published online:
01 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Fernández DF, Mascareñas JL, López F. Chem. Soc. Rev. 2020; 49: 7378
- 1b Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
- 1c Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1d Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1e Crisenza GE. M, Bower JF. Chem. Lett. 2016; 45: 2
- 2a Aldhous TP, Chung RW. M, Dalling AG, Bower JF. Synthesis 2021; 53: 2961
- 2b Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
- 2c Woźniak L, Tan J.-F, Nguyen Q.-H, du Vigné AM, Smal V, Cao Y.-X, Cramer N. Chem. Rev. 2020; 120: 10516
- 2d Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 2e Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 2f Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 2g Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
- 2h Pan S, Shibata T. ACS Catal. 2013; 3: 704
- 2i Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 3a Sun X, Bai X.-Y, Li A.-Z, Li B.-J. Organometallics 2021; 40: 2182
- 3b Romero-Arenas A, Hornillos V, Iglesias-Sigüenza J, Fernández R, López-Serrano J, Ros A, Lassaletta JM. J. Am. Chem. Soc. 2020; 142: 2628
- 3c Grélaud S, Cooper P, Feron LJ, Bower JF. J. Am. Chem. Soc. 2018; 140: 9351
- 3d Shibata T, Michino M, Kurita H, Tahara Y, Kanyiva KS. Chem. Eur. J. 2017; 23: 88
- 3e Shirai T, Yamamoto Y. Angew. Chem. Int. Ed. 2015; 54: 9894
- 3f Shibata T, Shizuno T. Angew. Chem. Int. Ed. 2014; 53: 5410
- 3g Sevov CS, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2116
- 3h Pan S, Ryu N, Shibata T. J. Am. Chem. Soc. 2012; 134: 17474
- 3i Tsuchikama K, Kasagawa M, Hashimoto Y.-K, Endo K, Shibata T. J. Organomet. Chem. 2008; 693: 3939
- 3j Dorta R, Togni A. Chem. Commun. 2003; 760
- 3k Aufdenblatten R, Diezi S, Togni A. Monatsh. Chem. 2000; 131: 1345
- 3l Wang S.-G, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 2514
- 3m Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
- 3n Potter TJ, Kamber DN, Mercado BQ, Ellman JA. ACS Catal. 2017; 7: 150
- 3o Filloux CM, Rovis T. J. Am. Chem. Soc. 2015; 137: 508
- 3p Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
- 3q Whyte A, Torelli A, Mirabi B, Prieto L, Rodríguez JF, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
- 3r Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 3s Lee P.-S, Yoshikai N. Org. Lett. 2015; 17: 22
- 3t Loup J, Zell D, Oliveira JC. A, Keil H, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 14197
- 4a Wang H, Bai Z, Jiao T, Deng Z, Tong H, He G, Peng G, Chen G. J. Am. Chem. Soc. 2018; 140: 3542
- 4b Marcum JS, Roberts CC, Manan RS, Cervarich TN, Meek SJ. J. Am. Chem. Soc. 2017; 139: 15580
- 5a Lou S.-J, Mo Z, Nishiura M, Hou Z. J. Am. Chem. Soc. 2020; 142: 1200
- 5b Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
- 5c Wang Y.-X, Qi S.-L, Luan Y.-X, Han X.-W, Wang S, Chen H, Ye M. J. Am. Chem. Soc. 2018; 140: 5360
- 5d Zhang W.-B, Yang X.-T, Ma JB, Su Z.-M, Shi SL. J. Am. Chem. Soc. 2019; 141: 5628
- 5e Fujii N, Kakiuchi F, Yamada A, Chatani N, Murai S. Chem. Lett. 1997; 425
- 5f Fujii N, Kakiuchi F, Yamada A, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1998; 71: 285
- 5g Li Z.-Y, Handi H, Lakmal C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
- 5h Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
- 5i Thalji RK, Ellman JA, Bergman RG. J. Am. Chem. Soc. 2004; 126: 7192
- 5j Watzke A, Wilson RM, O’Malley SJ, Bergman RG, Ellman JA. Synlett 2007; 2383
- 5k Tsai AS, Wilson RM, Harada H, Bergman RG, Ellman JA. Chem. Commun. 2009; 3910
- 5l Ye B, Donets PA, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 507
- 5m Shibata T, Ryu N, Takano H. Adv. Synth. Catal. 2015; 357: 1131
- 5n Shibata T, Kurita H, Onoda S, Kanyiva KS. Asian J. Org. Chem. 2018; 7: 1411
- 5o Shinde VS, Mane MV, Cavallo L, Rueping M. Chem. Eur. J. 2020; 26: 8308
- 5p Arribas A, Calvelo M, Fernández DF, Rodrigues CA. B, Mascareñas JL, López F. Angew. Chem. Int. Ed. 2021; 60: 19297
- 5q Ref. 6j
- 6a Ebe Y, Nishimura T. J. Am. Chem. Soc. 2015; 137: 5899
- 6b Hatano M, Ebe Y, Nishimura T, Yorimitsu H. J. Am. Chem. Soc. 2016; 138: 4010
- 6c Yamauchi D, Nishimura T, Yorimitsu H. Chem. Commun. 2017; 53: 2760
- 6d Ebe Y, Onoda M, Nishimura T, Yorimitsu H. Angew. Chem. Int. Ed. 2017; 56: 5607
- 6e Nagamoto M, Fukuda J, Hatano M, Yorimitsu H, Nishimura T. Org. Lett. 2017; 19: 5952
- 6f Nagamoto M, Yorimitsu H, Nishimura T. Org. Lett. 2018; 20: 828
- 6g Sakamoto K, Nishimura T. Adv. Synth. Catal. 2019; 361: 2124
- 6h Sakamoto K, Nagai M, Ebe Y, Yorimitsu H, Nishimura T. ACS Catal. 2019; 9: 1347
- 6i Murakami K, Nagamoto M, Nishimura T. Chem. Lett. 2020; 49: 732
- 6j Sakamoto K, Nishimura T. Org. Biomol. Chem. 2021; 19: 684
- 7 Rössler SL, Petrone DA, Carreira EM. Acc. Chem. Res. 2019; 52: 2657
- 8 Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
- 9a Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
- 9b Mariz R, Briceño A, Dorta R, Dorta R. Organometallics 2008; 27: 6605
- 9c Hoffman TJ, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 10670
- 9d Li Z, Cao Z, Du H. Org. Biomol. Chem. 2011; 9: 5369
- 10 Zhang M, Huang G. Dalton Trans. 2016; 45: 3552
- 11 Green LM, Meek DW. Organometallics 1989; 8: 659
- 12 Okimoto Y, Sakaguchi S, Ishii Y. J. Am. Chem. Soc. 2002; 124: 1591
For recent reviews, see:
For reviews of asymmetric reactions involving C–H activation, see:
Selected recent examples of enantioselective intermolecular hydroarylation and -alkenylation via C–H activation. Ir:
Rh:
Co:
Fe:
For recent examples of metal-catalyzed intermolecular asymmetric hydroarylation via electrophilic substitution, see:
Selected examples of asymmetric intramolecular hydroarylation and -alkenylation. Sc:
Ni:
Ru:
Rh:
Ir:
See also:
For our recent reports on iridium-catalyzed hydroarylation and ‑alkenylation, see:
For selected examples, see: