RSS-Feed abonnieren
DOI: 10.1055/a-1674-6564
Cobalt-Catalyzed Hydroxyperfluoroalkylation of Alkenes with Perfluoroalkyl Bromides and Atmospheric Oxygen
We would like to thank the National Natural Science Foundation of China (Grant 22001008 to Q.L., 21971260 to S.L.), the Natural Science Foundation of Anhui Province (Grant 2008085QB61) and Anhui Agricultural University (RC381902, 2019zd13) to Q.L., Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (2018B030306018), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), the Pearl River Talent Recruitment Program of Guangdong Province (2019QN01L111) and the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology (No. 2018kf04) to S.L., Innovation Projects of Zhengzhou Tobacco Research Institute (442020CR0320 to W.F.).
Abstract
A mild and efficient method for the cobalt-catalyzed hydroxyperfluoroalkylation of alkenes has been developed. This method demonstrated broad substrate scope, good yields, and mild conditions with the tolerance of mono-, di-, and trisubstituted alkenes including both styrenes and non-activated aliphatic olefins. This strategy offered a valuable solution for rapid and efficient construction of β-perfluoroalkyl alcohols using widely available and inexpensive perfluoroalkyl bromides and atmospheric oxygen.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1674-6564.
- Supporting Information
Publikationsverlauf
Eingereicht: 27. September 2021
Angenommen nach Revision: 20. Oktober 2021
Accepted Manuscript online:
20. Oktober 2021
Artikel online veröffentlicht:
22. November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Blackwell; Chichester: 2009
- 1b Smart BE. J. Fluorine Chem. 2001; 109: 3
- 1c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1d Hird M. Chem. Soc. Rev. 2007; 36: 2070
- 2a Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 2b Chamberlain BT, Batra VK, Beard WA, Kadina AP, Shock DD, Kashemirov BA, McKenna CE, Goodman MF, Wilson SH. ChemBioChem 2012; 13: 528
- 3a Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 3b Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
- 3c Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
- 3d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 3e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3f Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 3g Kirk KL. Org. Process Res. Dev. 2008; 12: 305
- 3h Tomashenko O, Grushin VV. Chem. Rev. 2011; 111: 4475
- 3i Fan C, Song J, Qiu G, Liu G, Wu J. Org. Chem. Front. 2014; 1: 924
- 3j Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
- 3k Aribi F, Schmitt E, Panossian A, Vors J.-P, Pazenok S, Leroux FR. Org. Chem. Front. 2016; 3: 1392
- 3l Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 3m Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 3n Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 4a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 4b Heinrich MR. Chem. Eur. J. 2009; 15: 820
- 4c McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 4d Wolfe JP. Angew. Chem. Int. Ed. 2012; 51: 10224
- 4e Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
- 4f Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
- 4g Cao M.-Y, Ren X, Lu Z. Tetrahedron Lett. 2015; 56: 3732
- 4h Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 4i Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 4j Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
- 4k Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
- 5a Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
- 5b Luo H.-Q, Zhang Z.-P, Dong W, Luo X.-Z. Synlett 2014; 25: 1307
- 5c Yang Y, Liu Y, Jiang Y, Zhang Y, Vicic DA. J. Org. Chem. 2015; 80: 6639
- 5d Liu C, Lu Q, Huang Z, Zhang J, Liao F, Peng P, Lei A. Org. Lett. 2015; 17: 6034
- 5e Panday P, Garg P, Singh A. Asian J. Org. Chem. 2018; 7: 111
- 5f Li Q, Fan W, Peng D, Meng B, Wang S, Huang R, Liu S, Li S. ACS Catal. 2020; 10: 4012
- 6a Nappi M, Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
- 6b He L, Natte K, Rabeah J, Taeschler C, Neumann H, Brückner A, Beller M. Angew. Chem. Int. Ed. 2015; 54: 4320
- 6c Li Z, Wang M, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 186
- 6d Zhou Q.-L, Huang Y.-Z. J. Fluorine Chem. 1988; 39: 87
- 6e Médebielle M, Fujii S, Kato K. Tetrahedron 2000; 56: 2655
- 6f Tsuchii K, Ueta Y, Kamada N, Einaga Y, Nomoto A, Ogawa A. Tetrahedron Lett. 2005; 46: 7275
- 6g Jana K, Mizota I, Studer A. Org. Lett. 2021; 23: 1280
- 6h Iizuka M, Fukushima S, Yoshida M. Chem. Lett. 2007; 36: 1042
- 6i Straathof NJ. W, Gemoets HP. L, Wang X, Schouten JC, Hessel V, Noël T. ChemSusChem 2014; 7: 1612
- 6j Zhao K, Guo J.-Y, Guan T, Wang Y.-X, Tao J.-Y, Zhang Y, Zhang Q.-H, Ni K, Loh T.-P. Org. Chem. Front. 2021; 8: 4086
- 6k Zheng D, Studer A. Org. Lett. 2019; 21: 325
- 6l Wang Y, Wang J, Li G.-X, He G, Chen G. Org. Lett. 2017; 19: 1442
- 6m Cao J, Wang G, Gao L, Chen H, Liu X, Cheng X, Li S. Chem. Sci. 2019; 10: 2767
- 6n Zeng R, Fu C, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3888
- 6o Ma Z, Zeng R, Fu C, Ma S. Tetrahedron 2011; 67: 8808
- 6p Ma Z, Ma S. Tetrahedron 2008; 64: 6500
- 6q Ma S, Ma Z. Synlett 2006; 1263
- 6r Luo Q, Liu C, Tong J, Shao Y, Shan W, Wang H, Zheng H, Cheng J, Wan X. J. Org. Chem. 2016; 81: 3103
- 6s Shi E, Liu J, Liu C, Shao Y, Wang H, Lv Y, Ji M, Bao X, Wan X. J. Org. Chem. 2016; 81: 5878
- 6t Chen Y, Li L, He X, Li Z. ACS Catal. 2019; 9: 9098
- 6u Liu C, Shi E, Xu F, Luo Q, Wang H, Chen J, Wan X. Chem. Commun. 2015; 51: 1214
- 6v Li L, Huang M, Liu C, Xiao J.-C, Chen Q.-Y, Guo Y, Zhao Z.-G. Org. Lett. 2015; 17: 4714
- 6w Su Z, Guo Y, Chen Q.-Y, Zhao Z.-G, Nian B.-Y. Chin. J. Chem. 2019; 37: 597
- 7 Feng Z, Min Q.-Q, Zhao H.-Y, Gu J.-W, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1270
- 8a Yoshida M, Ohkoshi M, Aoki N, Ohnuma Y, Iyoda M. Tetrahedron Lett. 1999; 40: 5731
- 8b Yoshida M, Ohkoshi M, Muraoka T, Matsuyama H, Iyoda M. Bull. Chem. Soc. Jpn. 2002; 75: 1833
- 9 Geng X, Lin F, Wang X, Jiao N. J. Photochem. Photobiol., A 2018; 355: 194
- 10a Chen T, Guo Y, Sun K, Wu L.-Z, Liu W.-Q, Liu C, Huang Y, Chen Q.-Y. Org. Chem. Front. 2018; 5: 1045
- 10b Gryaznova TV, Khrizanforov MN, Kholin KV, Vorotyntsev MA, Gor’kov KV, Talagaeva NV, Dmitrieva MV, Zolotukhina EV, Budnikova YH. Catal. Lett. 2018; 148: 3119
- 11 Wang L, Qi C, Guo T, Jiang H. Org. Lett. 2019; 21: 2223
- 12 Salomon P, Zard SZ. Org. Lett. 2014; 16: 2926
- 13 Kischkewitz M, Okamoto K, Mück-Lichtenfeld C, Studer A. Science 2017; 355: 936
- 14 Sato K, Higashinagata M, Yuki T, Tarui A, Omote M, Kumadaki I, Ando A. J. Fluorine Chem. 2008; 129: 51