Subscribe to RSS
DOI: 10.1055/a-1677-5870
Recent Advances on Transition-Metal-Catalyzed Asymmetric C–H Arylation Reactions
This work was supported by the National Natural Science Foundation of China (NSFC 21902072).
Abstract
Transition-metal-catalyzed asymmetric C–H functionalization has become a powerful strategy to synthesize complex chiral molecules. Recently, catalytic enantioselective C–H arylation has attracted great interest from organic chemists to construct aryl-substituted chiral compounds. In this short review, we highlight recent advances in asymmetric C–H arylation from 2019 to late 2021, including enantioselective C(sp2)–H arylation to construct axial or planar chiral compounds, and enantioselective C(sp3)–H arylation to introduce central chirality via desymmetrization of the methyl group or methylene C–H activation. These processes proceed with palladium, rhodium, iridium, nickel, or copper catalysts, and utilize aryl halides, boron, or diazo derivatives as arylation reagents.
1 Introduction
2 Transition-Metal-Catalyzed Asymmetric C(sp2)–H Arylation
2.1 Chelation-Assisted Asymmetric C(sp2)–H Arylation for the Construction of Atropisomer
2.2 Chelation-Assisted Asymmetric C(sp2)–H Arylation for the Construction of Planar Chiral Compounds
2.3 Chelation-Assisted Asymmetric C(sp2)–H Arylation and Axial-to-Central Chirality Transfer for the Construction of Spirocycles
2.4 Other Asymmetric C(sp2)–H Arylation Reactions
3 Transition-Metal-Catalyzed Asymmetric C(sp3)–H Arylation
3.1 Chelation-Assisted Enantioselective C(sp3)–H Arylation through Desymmetrization
3.2 Chelation-Assisted Enantioselective Methylene C(sp3)–H Arylation
3.3 Other Asymmetric C(sp3)–H Arylations
4 Conclusion and Outlook
Key words
C–H bond functionalization - transition-metal catalysis - asymmetric C–H activation - C(sp2)–H arylation - C(sp3)–H arylation - arylation - chiral ligandsPublication History
Received: 26 September 2021
Accepted after revision: 25 October 2021
Accepted Manuscript online:
25 October 2021
Article published online:
14 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
-
1b
Kuhl N,
Hopkinson MN,
Wencel-Delord J,
Glorius F.
Angew. Chem. Int. Ed. 2012; 51: 10236
- 1c Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1d Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 1e Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
-
1f
He J,
Wasa M,
Chan KS. L,
Shao Q,
Yu J.-Q.
Chem. Rev. 2017; 117: 8754
- 1g Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 1h Gandeepan P, Ackermann L. Chem 2018; 4: 199
-
2a
Yamaguchi J,
Yamaguchi AD,
Itami K.
Angew. Chem. Int. Ed. 2012; 51: 8960
- 2b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2c Ackermann L. Org. Process Res. Dev. 2015; 19: 260
- 2d Seki M. Org. Process Res. Dev. 2016; 20: 867
- 2e Basu D, Kumar S, Sai Sudhir V, Bandichhor R. J. Chem. Sci. 2018; 130: 71
- 2f Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
-
3
Hartwig JF,
Larsen MA.
ACS Cent. Sci. 2016; 2: 281
- 4a Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 4b Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 4c Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 4d Dey A, Maity S, Maiti D. Chem. Commun. 2016; 52: 12398
- 4e Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
- 4f Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 10571
- 5a Moir M, Danon JJ, Reekie TA, Kassiou M. Expert Opin. Drug Discovery 2019; 14: 1137
- 5b Börgel J, Ritter T. Chem 2020; 6: 1877
- 5c Kelly CB, Padilla-Salinas R. Chem. Sci. 2020; 11: 10047
- 6 Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 7a Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
- 7b Pellissier H, Clavier H. Chem. Rev. 2014; 114: 2775
- 7c Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
- 7d Pellissier H. Coord. Chem. Rev. 2019; 386: 1
- 8a Groves JT, Viski P. J. Am. Chem. Soc. 1989; 111: 8537
- 8b Burg F, Breitenlechner S, Jandl C, Bach T. Chem. Sci. 2020; 11: 2121
- 9a DeAngelis A, Shurtleff VM, Dmitrenko O, Fox JM. J. Am. Chem. Soc. 2011; 133: 1650
- 9b Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230
- 10a Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 10b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 10c Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
-
10d
Shao Q,
Wu K,
Zhuang Z,
Qian S,
Yu J.-Q.
Acc. Chem. Res. 2020; 53: 833
- 10e Thongpaen J, Manguin R, Baslé O. Angew. Chem. Int. Ed. 2020; 59: 10242
- 10f Yang K, Song M, Liu H, Ge H. Chem. Sci. 2020; 11: 12616
- 10g Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 10h Liu C.-X, Gu Q, You S.-L. Trends Chem. 2020; 2: 737
- 10i Achar TK, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
- 10j Liu W, Ke J, He C. Chem. Sci. 2021; 12: 10972
- 10k Liu C.-X, Zhang W.-W, Yin S.-Y, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 14025
- 11 Wang Q, Cai Z.-J, Liu C.-X, Gu Q, You S.-L. J. Am. Chem. Soc. 2019; 141: 9504
- 12 Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
- 13 Feng J, Gu Z. SynOpen 2021; 5: 68
- 14 Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
- 15 Yang C, Wu T.-R, Li Y, Wu B.-B, Jin R.-X, Hu D.-D, Li Y.-B, Bian K.-J, Wang X.-S. Chem. Sci. 2021; 12: 3726
- 16 Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
- 17 Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 18532
- 18 Cai Z.-J, Liu C.-X, Gu Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 2149
- 19 Cai Z.-J, Liu C.-X, Wang Q, Gu Q, You S.-L. Nat. Commun. 2019; 10: 4168
- 20 Liu C.-X, Cai Z.-J, Wang Q, Wu Z.-J, Gu Q, You S.-L. CCS Chem. 2020; 2: 642
- 21 Kong L, Han X, Liu S, Zou Y, Lan Y, Li X. Angew. Chem. Int. Ed. 2020; 59: 7188
- 22 Batuecas M, Luo J, Gergelitsová I, Krämer K, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2019; 9: 5268
- 23 Nguyen Q.-H, Guo S.-M, Royal T, Baudoin O, Cramer N. J. Am. Chem. Soc. 2020; 142: 2161
- 24 Savary D, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 5136
- 25 Jiang H.-J, Zhong X.-M, Liu Z.-Y, Geng R.-L, Li Y.-Y, Wu Y.-D, Zhang X, Gong L.-Z. Angew. Chem. Int. Ed. 2020; 59: 12774
- 26 Saint-Denis TG, Lam NY. S, Chekshin N, Richardson PF, Chen JS, Elleraas J, Hesp KD, Schmitt DC, Lian Y, Huh CW, Yu J.-Q. ACS Catal. 2021; 11: 9738
- 27 Jerhaoui S, Djukic J.-P, Wencel-Delord J, Colobert F. ACS Catal. 2019; 9: 2532
-
28
Zhuang Z,
Yu J.-Q.
J. Am. Chem. Soc. 2020; 142: 12015
- 29 Han Y.-Q, Yang X, Kong K.-X, Deng Y.-T, Wu L.-S, Ding Y, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 20455
- 30 Han Y.-Q, Zhang Q, Yang X, Jiang M.-X, Ding Y, Shi B.-F. Org. Lett. 2021; 23: 97
- 31 Yang X, Jiang M.-X, Zhou T, Han Y.-Q, Xu X.-T, Zhang K, Shi B.-F. Chem. Commun. 2021; 57: 5562
- 32 Xiao L.-J, Hong K, Luo F, Hu L, Ewing WR, Yeung K.-S, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 9594
- 33 Zhang W, Wu L, Chen P, Liu G. Angew. Chem. Int. Ed. 2019; 58: 6425
- 34 Cheng X, Lu H, Lu Z. Nat. Commun. 2019; 10: 3549
- 35 Kong W.-X, Xie S.-J, Cao C.-Y.-Z, Zhang C.-W, Wang C, Duan W.-L. Chem. Commun. 2020; 56: 2292
- 36 Melot R, Zuccarello M, Cavalli D, Niggli N, Devereux M, Bgrgi T, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 7245
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see: