CC BY-NC-ND 4.0 · SynOpen 2021; 05(04): 314-320 DOI: 10.1055/a-1681-4544
Mild Biamidine-Transfer Conditions for the Synthesis of Aliphatic Biguanides
Rostyslav Bardovskyi‡
a
Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
Marie Fabre‡
a
Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
a
Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
a
Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
b
Mohamed VI Polytechnic University, UM6P, 43150 BenGuerir, Morocco
› Author Affiliations The authors are grateful for the financial support from the Research Fund of the Cancéropôle Provence-Alpes-Côte d'Azur (PACA) and the SATT-Sud Est (EmA grant – Emergence et Accompagnement). The Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, ANR, and Région Sud are also acknowledged for additional funding.
Abstract
This study focuses on the development of new synthetic pathways to monosubstituted biguanides from amines. An exhaustive comparison of the conditions and reagents used for biamidine transfer was performed. New reagents were synthesized and optimized conditions for the synthesis of substituted biguanides under mild conditions were developed. Eventually, two high-yielding and straightforward protocols for the transfer of a biamidine group to various amines are proposed and their scope and limitations have been explored. These conditions include: i) a direct chromatography-free procedure and ii) an eco-friendly procedure in water compatible with bioinspired molecules. They are particularly efficient for the demanding conversion of aliphatic amines.
Key words
biguanide -
biamidine transfer -
mild conditions -
biocompatible protocol -
guanidine derivatives
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1681-4544.
Supporting Information
Publication History
Received: 27 July 2021
Accepted: 06 August 2021
Accepted Manuscript online: 28 October 2021
Article published online: 18 November 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Kathuria D,
Bankar AA,
Bharatam PV.
J. Mol. Struct. 2018; 1152: 61
2
Elmar B,
Stach K,
Schmidt FH,
Heerdt R,
Weber H.
US4017539A, 1977
3
Mayer S,
Daigle DM,
Brown ED,
Khatri J,
Organ MG.
J. Comb. Chem. 2004; 6: 776
4
Smolka A,
Friedreich A.
Monatsh. Chem. 1888; 9: 227
5
Tonelli M,
Espinoza S,
Gainetdinov RR,
Cichero E.
Eur. J. Med. Chem. 2017; 127: 781
6
van Kuijk SJ. A,
Parvathaneni NK,
Niemans R,
van Gisbergen MW,
Carta F,
Vullo D,
Pastorekova S,
Yaromina A,
Supuran CT,
Dubois LJ,
Winum J.-Y,
Lambin P.
Eur. J. Med. Chem. 2017; 127: 691
7
Suyama T,
Soga T,
Miyauchi KA.
Nippon Kagaku Kaishi 1989; 5: 884
8
Obianom ON,
Coutinho AL,
Yang W,
Yang H,
Xue F,
Shu Y.
Mol. Pharm. 2017; 14: 2726
9
Kim SW,
Kim HW,
Yoo SH,
Lee JS,
Heo HJ,
Lee HB,
Kook JA,
Lee YW,
Kim MJ,
Cho W.
WO2015160220A1, 2015
10
Fortun S,
Schmitzer AR.
ACS Omega 2018; 3: 1889
11
Fortun S,
Schmitzer AR.
Can. J. Chem. 2020; 98: 251
12
Guo Z,
Cainmldge AN,
Mckiilop A.
Tetrahedron Lett. 1999; 40: 6999
13
Chen HY,
Zhao M,
Tan J.-H,
Huang Z.-S,
Liu G.-F,
Ji L.-N,
Mao Z.-W.
Tetrahedron 2014; 70: 2378
14
Yan Q,
Zhao Y.
Chem. Sci. 2015; 6: 4343
15
Hao X,
Sang W,
Hu J,
Yan Q.
ACS Macro Lett. 2017; 6: 1151
16
Shuhui C,
Zhifei F,
Jian L,
Miaorong L,
Yang Z.
AU2017306487A1, 2018
17
Vaillancourt VA,
Larsen SD,
Tanis SP,
Burr JE,
Connell MA,
Cudahy MM,
Evans BR,
Fisher PV,
May PD,
Meglasson MD,
Robinson DD,
Stevens FC,
Tucker JA,
Vidmar TJ,
Yu JH.
J. Med. Chem. 2001; 44: 1231
18
Igashira-Kamiyama A,
Kajiwara T,
Nakano M,
Konno T,
Ito T.
Inorg. Chem. 2009; 48: 11388
19
Eilingsfeld H,
Scheuermann H.
Chem. Ber. 1967; 100: 1874
20
Bando S,
Ichikawa E,
Odo K.
J. Synth. Org. Chem., Jpn. 1970; 28: 521
21
Kawano K.
Bull. Kyushu Inst. Technol., Math., Nat. Sci. 1962; 12: 69
22
Kim HW,
Jeong JK,
Lee JS,
Heo HJ,
Lee HB,
Kook JA,
Kim SW.
WO2016080810 A2, 2016
23
Shapiro SL,
Parrino VA,
Freedman L.
J. Am. Chem. Soc. 1959; 81: 3728
24
Kim SW,
Kim HW,
Yoo SH,
Lee JS,
Heo HJ,
Lee HB,
Kook JA,
Lee YW,
Kim MJ,
Cho W.
US2017073331 A1, 2015
25
Ma X,
Tan S.-T,
Khoo C.-L,
Sim H.-M,
Chan L.-W,
Chui W.-K.
Bioorg. Med. Chem. Lett. 2011; 21: 5428
26
Makowska A,
Saczewski F,
Bednarski PJ,
Saczewski J,
Balewski Ł.
Molecules 2018; 23: 1
27
Husain MI,
Srivastava VP.
Indian J. Chem., Sect. B. Org. Chem. Incl. Med. Chem. 1984; 23B: 789
28
Corbellini A,
Lugaro G,
Giannattasio G,
Torti G.
Arch. Ital. Patol. Clin. Tumori 1967; 10: 197
29
Shapiro SL,
Freedman L.
US2961377A, 1957
30
Kim HW,
Jeong JK,
Lee JS,
Hye JH,
Kook JA,
Kim SW.
US2020/0277255 A1, 2020