Subscribe to RSS
DOI: 10.1055/a-1683-0484
The Application of 1,2-Oxazinanes as Chiral Cyclic Weinreb Amide-Type Auxiliaries Leading to a Three-Component, One-Pot Reaction

Abstract
1,2-Oxazines were synthesised via a copper-catalysed aerobic acyl nitroso Diels–Alder reaction from 1,4-disubstituted 1,3-dienes and N-Boc-hydroxylamine. From this, 1,2-oxazinanes were obtained in a novel follow-up reaction path. The stability of several 1,2-oxazines and 1,2-oxazinanes towards organometallic compounds was tested to rate their operability as cyclic chiral Weinreb amide auxiliaries. 3,6-Di-tert-butyl-1,2-oxazinane gave the best results and was introduced as a chiral Weinreb amide-type auxiliary to yield chiral α-substituted ketones in a diastereomeric ratio of up to 98:2. The removal of the auxiliary can be performed with BuLi to form unsymmetrical α-chiral ketones. Thereafter, the chiral auxiliary can be re-isolated and purified by sublimation under vacuum.
Key words
chiral auxiliaries - Weinreb amides - nitroso Diels–Alder reaction - 1,2-oxazines - 1,2-oxazinanes - chiral ketonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1683-0484.
- Supporting Information
Publication History
Received: 23 August 2021
Accepted after revision: 29 October 2021
Accepted Manuscript online:
29 October 2021
Article published online:
06 December 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MA. N. Chirality 2019; 31: 776
- 1b Gnas Y, Glorius F. Synthesis 2006; 1899
- 1c Heravi MM, Zadsirjan V, Daraie M. Curr. Org. Synth. 2017; 14: 61
- 2a Fujioka H, Ohba Y, Nakahara K, Takatsuji M, Murai K, Ito M, Kita Y. Org. Lett. 2007; 9: 5605
- 2b Nazari A, Heravi MM, Zadsirjan V. J. Organomet. Chem. 2021; 932: 121629
- 2c Heravi MM, Zadsirjan V, Farajpour B. RSC Adv. 2016; 6: 30498
- 3a Oppolzer W. Pure Appl. Chem. 1990; 62: 1241
- 3b Heravi MM, Zadsirjan V. Tetrahedron: Asymmetry 2014; 25: 1061
- 3c Zhang L, Zhu L, Yang J, Luo J, Hong R. J. Org. Chem. 2016; 81: 3890
- 4 Zadsirjan V, Heravi MM. Curr. Org. Synth. 2018; 15: 3
- 5a Davies SG, Fletcher AM, Thomson JE. Chem. Commun. 2013; 49: 8586
- 5b Davies SG, Fletcher AM, Roberts PM, Thomson JE. Org. Biomol. Chem. 2019; 17: 1322
- 5c Abiko A, Moriya O, Filla SA, Masamune S. Angew. Chem., Int. Ed. Engl. 1995; 34: 793
- 6a Chernega AN, Davies SG, Goodwin CJ, Hepworth D, Kurosawa W, Roberts PM, Thomson JE. Org. Lett. 2009; 11: 3254
- 6b Davies SG, Goodwin CJ, Hepworth D, Roberts PM, Thomson JE. J. Org. Chem. 2010; 75: 1214
- 7a Heravi MM, Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149
- 7b Hasegawa T, Yamamoto H. Synlett 1998; 882
- 8 Weinreb SM, Nahm S. Tetrahedron Lett. 1981; 22: 3815
- 9a Brulíkova L, Harrison A, Miller MJ, Hlaváč J. Beilstein J. Org. Chem. 2016; 12: 1947
- 9b Memeo MG, Quadrelli P. Chem. Rev. 2017; 117: 2108
- 9c Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
- 9d A general overview for the NDA reaction: Yamamoto H, Momiyami N. Chem. Commun. 2005; 3514
- 9e Sparks SM, Chow CP, Zhu L, Shea KJ. J. Org. Chem. 2004; 69: 3025
- 10a Periodate: Kirby GW. Chem. Soc. Rev. 1977; 6: 1
- 10b Hypoiodite: Uraoka S, Shinohara I, Shimizu H, Noguchi K, Yoshimura A, Zhdankin VV, Saito A. Eur. J. Org. Chem. 2018; 6199
- 10c Dess–Martin periodinane: Jenkins NE, Ware RW. Jr, Atkinson RN, King SB. Synth. Commun. 2000; 30: 947
- 10d MnO2-catalysed continuous flow: Nakashima E, Yamamoto H. Chem. Commun. 2015; 51: 12309
- 10e Swern oxidation: Martin SF, Hartmann M, Josey JA. Tetrahedron Lett. 1992; 33: 3583
- 10f Ir-catalysed: Iwasa S, Tajima K, Tsushima S, Nishiyama H. Tetrahedron Lett. 2001; 42: 5897
- 11 Fährmann J, Hilt G. Angew. Chem. Int. Ed. 2021; 60: 20313
- 12a Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
- 12b Frazier CP, Bugarin A, Engelking JR, de Alaniz JR. Org. Lett. 2012; 14: 3620
- 13a Menichetti A, Berti F, Pineschi M. Molecules 2020; 25: 563
- 13b Xu X.-B, Liu Y.-N, Rao G.-W. Russ. J. Org. Chem. 2019; 55: 559
- 14a Graham SL, Scholz TH. Tetrahedron Lett. 1990; 31: 6269
- 14b Photochemical decomposition: Kaatritzky AR, Brown SB. Synthesis 1978; 619
- 15a For a recent review, see: Senatore R, Ielo L, Monticelli S, Castoldi L, Pace V. Synthesis 2019; 51: 2792
- 15b Miele M, Citarella A, Micale N, Holzer W, Pace V. Org. Lett. 2019; 21: 8261
- 15c Baker DB, Gallagher PT, Donohoe JT. Tetrahedron 2013; 69: 3690
- 16 Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2021; 29: 2176
- 17 Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D. J. Appl. Crystallogr. 2015; 48: 3
- 18 Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008; 64: 112
- 19 Sheldrick GM. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015; 71: 3
- 20 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
- 21 Knoll K, Schrock RR. J. Am. Chem. Soc. 1989; 111: 7989
- 22 de Mattos MC. S, Sanseverino AM. Synth. Commun. 2003; 33: 2181
- 23 Mahapatra S, Carter RG. J. Am. Chem. Soc. 2013; 135: 10792
- 24 Tamura R, Saegusa K, Kakihana M, Oda D. J. Org. Chem. 1988; 53: 2723
- 25 Chaco MC, Iyer BH. J. Org. Chem. 1960; 25: 186
- 26 Bilke H, Collin G, Duschek C, Höbold W, Höhn R, Pritzkow W, Schmidt H, Schnurpfeil D. J. Prakt. Chem. 1969; 311: 1037
- 27 Blackett BN, Coxon JM, Hartshorn MP, Richards KE. Aust. J. Chem. 1970; 23: 2077
- 28 Kleveland K, Skattebøl L. Acta Chem. Scand., Ser. B 1975; 29: 191
- 29 Li J.-H, Liang Y, Xie Y.-X. J. Org. Chem. 2004; 69: 8125
- 30 Das R, Kapur M. Chem. Eur. J. 2016; 22: 16986
- 31 Klamann D, Weyerstahl P, Fligge M, Kratzer J. Justus Liebigs Ann. Chem. 1965; 686: 122
- 32 Bhat JI, Clegg W, Maskill H, Elsegood MR. J, Menneer ID, Miatt PC. J. Chem. Soc., Perkin Trans. 2 2000; 1435
- 33 Sheng W.-B, Jiang Q, Luo W.-P, Guo C.-C. J. Org. Chem. 2013; 78: 5691
- 34 Kechaou-Perrot M, Vendier L, Bastin S, Sotiropoulos J.-M, Miqueu K, Menéndez-Rodríguez L, Crochet P, Cadierno V, Igau A. Organometallics 2014; 33: 6294
- 35 Peters BB. C, Jongcharoenkamol J, Krajangsri S, Andersson PG. Org. Lett. 2021; 23: 242
Examples for the removal of chiral auxiliaries:
Selected examples of hydroxamic acid oxidations:
Recent articles: