Subscribe to RSS
DOI: 10.1055/a-1688-1601
Gibt es statisch-strukturelle Biomarker bei den Glaukomen mit der OCT?
Article in several languages: deutsch | English
Zusammenfassung
Glaukome stellen in ihrer Endstrecke eine spezifische, sich schleichend entwickelnde Neuropathie mit später fortschreitenden Gesichtsfelddefekten dar. Die Frühdiagnose ist herausfordernd, aber notwendig, da der Schaden irreparabel ist. Biomarker der strukturellen optischen Kohärenztomografie (OCT) können auf das Vorliegen einer neuronalen Atrophie hinweisen, sind jedoch in der Differenzialdiagnose zu anderen Atrophieformen nicht spezifisch. Die Kombination der OCT-Parameter miteinander und mit anderen klinischen Parametern kann die Glaukomdiagnose erleichtern. Die Anwendung von künstlicher Intelligenz (KI) auf OCT-Bilder könnte spezifischer und damit in Zukunft der reinen Schichtdickenmessung mit der OCT als Biomarker überlegen sein.
Schlüsselwörter
hochauflösende OCT - RNFL - Ganglienzellschicht - minimale Randsaumbreite - OptikusneuropathiePublication History
Received: 26 September 2021
Accepted: 28 December 2021
Article published online:
24 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur/References
- 1 Mardin C. Principles of glaucoma diagnostics with optical coherence tomography. Ophthalmologe 2015; 112: 639-645
- 2 Schrems-Hoesl LM, Schrems WA, Laemmer R. et al. Precision of optic nerve head and retinal nerve fiber layer parameter measurements by spectral-domain optical coherence tomography. J Glaucoma 2018; 27: 407-414
- 3 Pellegrini M, Vagge A, Ferro Desideri L. et al. Optical coherence tomography angiography in neurodegenerative disorders. J Clin Med 2020; 9: 1706
- 4 Hood DC. Does ganglion cell loss precede visual field loss in glaucoma?. J Glaucoma 2019; 28: 945-951
- 5 Nguyen J, Rothman A, Gonzalez N. et al. Macular ganglion cell and inner plexiform layer thickness is more strongly associated with visual function in multiple sclerosis than Bruch membrane opening minimum rim width or peripapillary retinal nerve fiber layer thicknesses. J Neuroophthalmol 2019; 39: 444-450
- 6 Özbilen KT, Gündüz T, Çukurova Kartal SN. et al. Bruchʼs membrane opening-minimum rim width: an alternative OCT biomarker study for multiple sclerosis. Eur J Ophthalmol 2021; 31: 2141-2149
- 7 Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999; 43: 293-320
- 8 Gardiner SK, Demirel S, Reynaud J. et al. Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 1221-1227
- 9 Xin D, Talamini CL, Raza AS. et al. Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects. Invest Ophthalmol Vis Sci 2011; 52: 7180-7186
- 10 Hasegawa T, Akagi T, Yoshikawa M. et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One 2015; 10: e0130175
- 11 Wolff B, Azar G, Vasseur V. et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014; 2014: 395189
- 12 Tatham AJ, Miki A, Weinreb RN. et al. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology 2014; 121: 110-118
- 13 Akashi A, Kanamori A, Nakamura M. et al. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci 2013; 54: 4478-4484
- 14 Zemborain ZZ, Jarukasetphon R, Tsamis E. et al. Optical Coherence Tomography Can Be Used to Assess Glaucomatous Optic Nerve Damage in Most Eyes With High Myopia. J Glaucoma 2020; 29: 833-845
- 15 Rabiolo A, Mohammadzadeh V, Fatehi N. et al. Comparison of Rates of Progression of Macular OCT Measures in Glaucoma. Transl Vis Sci Technol 2020; 9: 50
- 16 Moghimi S, Bowd C, Zangwill LM. et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980-988
- 17 Shin JW, Sung KR, Lee GC. et al. Ganglion cell–inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology 2017; 124: 1466-1474
- 18 Wessel JM, Horn FK, Tornow RP. et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 3613-3620
- 19 Luo H, Yang H, Gardiner SK. et al. Factors influencing central lamina cribrosa depth: a multicenter study. Invest Ophthalmol Vis Sci 2018; 59: 2357-2370
- 20 Leung CKS. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol 2014; 25: 104-111
- 21 Paulo A, Vaz PG, Andrade De Jesus D. et al. Optical Coherence Tomography Imaging of the Lamina Cribrosa: Structural Biomarkers in Nonglaucomatous Diseases. J Ophthalmol 2021; 2021: 8844614
- 22 Eraslan M, Cerman E, Yildiz Balci S. et al. The choroid and lamina cribrosa is affected in patients with Parkinsonʼs disease: enhanced depth imaging optical coherence tomography study. Acta Ophthalmol 2016; 94: 68-75
- 23 Ghassabi Z, Kuranov R, Schuman JS. et al. In Vivo Sublayer Analysis of Human Retinal Inner Plexiform Layer Obtained by Visible-Light Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2022; 63: 18
- 24 Panda SK, Cheong H, Tun TA. et al. Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence. Am J Ophthalmol 2021; 236: 172-182
- 25 Sułot D, Alonso-Caneiro D, Ksieniewicz P. et al. Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method. PLoS One 2021; 16: e0252339