Subscribe to RSS
DOI: 10.1055/a-1692-0760
Knochenaufbau und Knochenersatzmaterialien

Knochendefekte können primär aus traumatologischen Ursachen sowie sekundär aus Knocheninfektionen und Tumorerkrankungen resultieren. Die chirurgische Wiederherstellung der Bewegungsorgane bei Vorliegen eines behandlungsbedürftigen Knochendefekts stellt trotz der Entwicklung diverser Verfahren zum Knochenersatz und Knochenaufbau auch heute noch eine Herausforderung dar. Das autologe Knochentransplantat gilt als Goldstandard in der Behandlung. Wachsende Bedeutung wird den synthetischen Knochenersatzmaterialien beigemessen.
-
Die autologe Knochentransplantation gilt weiterhin als Goldstandard in der Behandlung von Knochendefekten.
-
Trotz der wachsenden Bedeutung existiert bislang kein synthetisches Knochenersatzmaterial (KEM), das alle notwendigen biologischen Eigenschaften ohne Risiken vereint.
-
Das ideale Knochenersatzmaterial sollte ein Gerüst für Osteokonduktivität und Wachstumsfaktoren für Osteoinduktivität bereitstellen sowie strukturell dem echten Knochen ähnlich sein.
-
Eine der Hauptindikationen zum Einsatz von synthetischem KEM stellt die Tibiakopffraktur dar, bei der für Kalziumphosphatzemente und Kalziumsulfat-Hydroxylapatit-Knochenzement überzeugende klinische Ergebnisse gezeigt werden konnten.
-
Aufgrund der fehlenden mechanischen Festigkeit müssen KEM in der Regel mit stabilen Osteosynthesen verbunden werden.
-
Eine Optimierung der Eigenschaften von KEM kann durch Kombination mit Wachstumsfaktoren erreicht werden.
-
BMPs (Bone morphogenetic Proteins) spielen als Wachstumsfaktoren eine wichtige Rolle in der Osteogenese. Der Einsatz von BMP-2 hat sich jedoch außerhalb der Wirbelsäulenchirurgie klinisch bislang nicht durchgesetzt.
-
Die Entwicklung moderner Technologien wie das Tissue-Engineering und der 3-D-Biodruck zielt bei der Herstellung von Knochenersatzmaterialien auf eine Kombination aus strukturellen mit zellbasierten biologischen Eigenschaften ab.
Schlüsselwörter
Knochenaufbau - Knochenersatz - autologe Knochentransplantation - allogenes Knochenimplantat - synthetische KnochenersatzmaterialienPublication History
Article published online:
04 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Rupp M, Klute L, Baertl S. et al. The clinical use of bone graft substitutes in orthopedic surgery in Germany-A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. J Biomed Mater Res B Appl Biomater 2021; 110: 350-357
- 2 Bone Grafts and Substitutes Market Size, Share| Report – 2028. Allied Market Research. Im Internet (Stand: 10.07.2021): https://www.alliedmarketresearch.com/bone-graft-substitutes-market
- 3 Kübler N. Knochenbildung durch Osteoinduktion: vom demineralisierten Knochen zu rekombinanten Bone Morphogenetic Proteins; experimentelle Grundlagen und klinische Anwendung in der Mund-, Kiefer- und Gesichtschirurgie. Berlin: Quintessenz-Verlag; 1998
- 4 Kim H, Kar AK, Kaja A. et al. More weighted cancellous bone can be harvested from the proximal tibia with less donor site pain than anterior iliac crest corticocancellous bone harvesting: retrospective review. J Orthop Surg Res 2021; 16: 220
- 5 Rentsch C, Rentsch B, Scharnweber D. et al. Knochenersatz: Transplantate und Ersatzmaterialien – ein Update. Unfallchirurg 2012; 115: 938-949
- 6 Ng VY. Risk of disease transmission with bone allograft. Orthopedics 2012; 35: 679-681
- 7 Traore A, Yombi JC, Tribak K. et al. Risk of virus transmission through femoral head allografts: A Belgian appraisal. J Clin Orthop Trauma 2013; 4: 119-122
- 8 Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: The diamond concept. Injury 2007; 38: S3-S6.(08)70003-2
- 9 Rupp M, Kerschbaum M, Klute L. et al. Knochentransplantation oder Biomaterial?. Unfallchirurg 2021; 124: 146-152
- 10 Palmer W, Crawford-Sykes A, Rose REC. Donor site morbidity following iliac crest bone graft. West Indian Med J 2008; 57: 490-492
- 11 Kobbe P, Tarkin IS, Frink M. et al. Gewinnung großvolumiger Spongiosamengen zur autologen Knochentransplantation aus dem femoralen Markraum. Unfallchirurg 2008; 111: 469-472
- 12 Krieg AH. Die extrakorporale Bestrahlung: Replantation von Knochensegmenten bei malignen Knochentumoren. Orthopäde 2017; 46: 681-687
- 13 Baumgart R, Schuster B, Baumgart T. Kallusdistraktion und Segmenttransport zur Behandlung von Knochendefekten. Orthopäde 2017; 46: 673-680
- 14 Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 1989; (239) 263-285
- 15 Fürmetz J, Soo C, Behrendt W. et al. Bone transport for limb reconstruction following severe tibial fractures. Orthop Rev (Pavia) 2016; 8: 6384
- 16 Josten Ch, Ekkernkamp A, Lies A. et al. Ring fixateur or unilateral fixateur: Influence of the different form of installation on bone regeneration?. In: Becker H-M, Hartel W. Hrsg. Wandel der Chirurgie in unserer Zeit. Berlin, Heidelberg: Springer; 1993: 956-959
- 17 Baumgart R, Hinterwimmer S, Kettler M. et al. [Central bone transport system optimizes reconstruction of bone defects. Results of 40 treatments]. Unfallchirurg 2005; 108: 1011-1021
- 18 Masquelet A, Kanakaris NK, Obert L. et al. Bone repair using the masquelet technique. JBJS 2019; 101: 1024-1036
- 19 Lenze U, Pohlig F, Knebel C. et al. Die autologe Fibulatransplantation zur Rekonstruktion knöcherner Defekte. Orthopäde 2017; 46: 648-655
- 20 Lenze U, Rechl H, Lenze FW, Pohlig F, Toepfer A, Harrasser N, von Eisenhart-Rothe R. Knochendefekte nach Tumorerkrankungen. In: Biberthaler P, van Griensven M. Hrsg. Knochendefekte und Pseudarthrosen. Berlin, Heidelberg: Springer; 2017: 129-144
- 21 Eisenschenk A, Lautenbach M, Rohlmann A. Free vascularized bone transplantation in the extremities. Orthopäde 1998; 27: 491-500
- 22 Lenze U, Kasal S, Hefti F. et al. Non-vascularised fibula grafts for reconstruction of segmental and hemicortical bone defects following meta-/diaphyseal tumour resection at the extremities. BMC Musculoskeletal Disorders 2017; 18: 289
- 23 Schuind F, Burny F, Lejeune FJ. Microsurgical free fibular bone transfer: a technique for reconstruction of large skeletal defects following resection of high-grade malignant tumors. World J Surg 1988; 12: 310-317
- 24 Scheffler S, Pruß A, Hackl W. et al. Verwendung von Allografts. Arthroskopie 2019; 32: 392-401
- 25 Lohmann CH, Andreacchio D, Köster G. et al. Tissue response and osteoinduction of human bone grafts in vivo. Arch Orth Traum Surg 2001; 121: 583-590
- 26 Pruss A, von Versen R. [Influence of European regulations on quality, safety and availability of cell and tissue allografts in Germany]. Handchir Mikrochir Plast Chir 2007; 39: 81-87
- 27 Moore RE, Baldwin K, Austin MS. et al. A systematic review of open reduction and internal fixation of periprosthetic femur fractures with or without allograft strut, cerclage, and locked plates. J Arthroplasty 2014; 29: 872-876
- 28 Tomás Hernández J, Holck K. Periprosthetic femoral fractures: When I use strut grafts and why?. Injury 2015; 46 Suppl 5: S43-46
- 29 Qiu Q-Q, Sun W-Q, Connor J. Sterilization of biomaterials of synthetic and biological origin. Comprehensive Biomaterials 2011; 4: 127-144
- 30 Hinsenkamp M, Collard J-F. Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. Int Orthop 2015; 39: 137-147
- 31 Zhang H, Yang L, Yang X. et al. Demineralized bone matrix carriers and their clinical applications: An overview. Orthop Surg 2019; 11: 725-737
- 32 Heinemann S, Gelinsky M, Worch H. et al. Resorbierbare Knochenersatzmaterialien: Eine Übersicht kommerziell verfügbarer Werkstoffe und neuer Forschungsansätze auf dem Gebiet der Komposite. Orthopäde 2011; 40: 761-773
- 33 Stich T, Alagboso F, Křenek T. et al. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med 2022; 7: e10239
- 34 Deligianni DD, Katsala ND, Koutsoukos PG. et al. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2000; 22: 87-96
- 35 Galois L, Mainard D. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 2004; 70: 598-603
- 36 Malhotra A, Habibovic P. Calcium phosphates and angiogenesis: Implications and advances for bone regeneration. Trends Biotechnol 2016; 34: 983-992
- 37 Dreesmann H. Ueber Knochenplombirung1). Dtsch Med Wochenschr 1893; 19: 445-446
- 38 Beuerlein MJS, McKee MD. Calcium sulfates: what is the evidence?. J Orthop Trauma 2010; 24: S46-S51
- 39 Tarar MY, Khalid A, Usman M. et al. Wound leakage with the use of calcium sulphate beads in prosthetic joint surgeries: a systematic review. Cureus 2021; 13: e19650
- 40 Ferguson J, Diefenbeck M, McNally M. Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J Bone Joint Infect 2017; 2: 38-51
- 41 Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 2010; 20: 1-12
- 42 An YH, Draughn RA. Mechanical Testing of Bone and the Bone-implant Interface. Boca Raton: CRC Press; 1999
- 43 Moore W, Graves S, Bain G. Synthetic bone graft substitutes. ANZ journal of surgery 2001; 71: 354-361
- 44 Martin RI, Brown PW. Mechanical properties of hydroxyapatite formed at physiological temperature. J Mater Sci: Mater Med 1995; 6: 138-143
- 45 Chow LC, Hirayama S, Takagi S. et al. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. J Biomed Mater Res 2000; 53: 511-517
- 46 Eliaz N, Metoki N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) 2017; 10: E334
- 47 Rueger JM. Bone replacement materials – state of the art and the way ahead. Orthopäde 1998; 27: 72-79
- 48 Goosen JHM, Kums AJ, Kollen BJ. et al. Porous-coated femoral components with or without hydroxyapatite in primary uncemented total hip arthroplasty: a systematic review of randomized controlled trials. Arch Orthop Trauma Surg 2009; 129: 1165-1169
- 49 Bose S, Tarafder S, Bandyopadhyay A. 7 – Hydroxyapatite Coatings for metallic Implants. In: Mucalo M, ed. Hydroxyapatite (Hap) for biomedical Applications. Woodhead Publishing; 2015: 143-157
- 50 Lu H, Zhou Y, Ma Y. et al. Current application of beta-tricalcium phosphate in bone repair and its mechanism to regulate osteogenesis. Frontiers in Materials 2021; 8: 277
- 51 Kühn K-D, Berberich C, Bösebeck H. Knochenersatzwerkstoffe als lokale Wirkstoffträger. Aktueller Stand bei Ersatzstoffen verschiedenen Ursprungs. Orthopäde 2018; 47: 10-23
- 52 Lee D-Y, Lee MC, Ha C-W. et al. Comparable bone union progression after opening wedge high tibial osteotomy using allogenous bone chip or tri-calcium phosphate granule: a prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2019; 27: 2945-2950
- 53 von Recum J, Gehm J, Guehring T. et al. Autologous bone graft versus silicate-substituted calcium phosphate in the treatment of tunnel defects in 2-stage revision anterior cruciate ligament reconstruction: A prospective, randomized controlled study with a minimum follow-up of 2 years. Arthroscopy 2020; 36: 178-185
- 54 OʼNeill R, McCarthy HO, Montufar EB. et al. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater 2017; 50: 1-19
- 55 Lodoso-Torrecilla I, van den Beucken JJJP, Jansen JA. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater 2021; 119: 1-12
- 56 Crovace MC, Souza MT, Chinaglia CR. et al. Biosilicate® – A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids 2016; 432: 90-110
- 57 Tanwar YS, Ferreira N. The role of bioactive glass in the management of chronic osteomyelitis: a systematic review of literature and current evidence. Infect Dis (Lond) 2020; 52: 219-226
- 58 Kikuchi M. Hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull 2013; 36: 1666-1669
- 59 Cooper GM, Kennedy MJ, Jamal B. et al. Autologous versus synthetic bone grafts for the surgical management of tibial plateau fractures: a systematic review and meta-analysis of randomized controlled trials. Bone Jt Open 2022; 3: 218-228
- 60 Russell TA, Leighton RK. Alpha-BSM Tibial Plateau Fracture Study Group. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 2008; 90: 2057-2061
- 61 Hofmann A, Gorbulev S, Guehring T. et al. autologous iliac bone graft compared with biphasic hydroxyapatite and calcium sulfate cement for the treatment of bone defects in tibial plateau fractures: a prospective, randomized, open-label, multicenter study. J Bone Joint Surg Am 2020; 102: 179-193
- 62 Roffi A, Di Matteo B, Krishnakumar GS. et al. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop 2017; 41: 221-237
- 63 Lin SH, Zhang WJ, Jiang XQ. Applications of bioactive ions in bone regeneration. Chinese J Dental Res 2019; 22: 93-104
- 64 Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971; 50: 1392-1406
- 65 Subramanian S, Mitchell A, Yu W. et al. Salicylic acid-based polymers for guided bone regeneration using bone morphogenetic protein-2. Tissue Eng Part A 2015; 21: 2013-2024
- 66 Govender S, Csimma C, Genant HK. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 84: 2123-2134
- 67 Aro HT, Govender S, Patel AD. et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am 2011; 93: 801-808
- 68 Alt V, Borgman B, Eicher A. et al. Effects of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) in grade III open tibia fractures treated with unreamed nails–A clinical and health-economic analysis. Injury 2015; 46: 2267-2272
- 69 Jones AL, Bucholz RW, Bosse MJ. et al. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 2006; 88: 1431-1441
- 70 Major Extremity Trauma Research Consortium (METRC). A randomized controlled trial comparing rhbmp-2/absorbable collagen sponge versus autograft for the treatment of tibia fractures with critical size defects. J Orthop Trauma 2019; 33: 384-391
- 71 Friedlaender GE, Perry CR, Cole JD. et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-A. Suppl1: . S151-158
- 72 Kuroda Y, Kawai T, Goto K. et al. Clinical application of injectable growth factor for bone regeneration: a systematic review. Inflamm Regen 2019; 39: 20
- 73 Lang S, Loibl M, Herrmann M. Platelet-Rich plasma in tissue engineering: hype and hope. Eur Surg Res 2018; 59: 265-275
- 74 Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2: 224-247
- 75 Ashammakhi N, Hasan A, Kaarela O. et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater 2019; 8: 1801048
- 76 Iaquinta MR, Mazzoni E, Bononi I. et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol 2019; 7: 268
- 77 Verboket R, Leiblein M, Seebach C. et al. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018; 44: 649-665
- 78 Narai T, Nakayama Y, Kodani I. et al. A paradigm shift in bone regeneration therapy: using mesenchymal stem cells and the CRISPR-Cas9 technology. Gene Technol 2021; S2: 4