RSS-Feed abonnieren
DOI: 10.1055/a-1697-7758
Recent Advances in Organocatalyzed Asymmetric Reduction of Prochiral Ketones: An Update
This work was supported by the National Natural Science Foundation of China (grant no. 22071235).
Abstract
Chiral alcohols are important synthetic intermediates and building blocks for the synthesis of drugs, agrochemicals, and natural products. Asymmetric reduction of prochiral ketones has been the most investigated method for accessing chiral alcohols. In this regard, organocatalyzed asymmetric reduction, as a complementary method to transition-metal- and enzyme-catalyzed reactions, has attracted tremendous interest in the past decades due to the reactions with such catalysts being metal-free and easy to operate, and principally, the ease of recovery and the ability to reuse the catalysts. Following up on a comprehensive overview on organocatalyzed asymmetric reductions of prochiral ketones in early 2018, this short review is intended to summarize the recent progress in this area from the beginning of 2018 until the end of August 2021.
1 Introduction
2 Boron-Based Chiral Organocatalysts
2.1 Boron-Containing Chiral Schiff Base Catalysts
2.2 Chiral Alpine-Borane Catalysts
2.3 Boron-Containing Chiral Frustrated Lewis Pair Catalysts
2.4 Chiral Borate Ester–Amine Complex Catalysts
3 Phosphorus-Based Chiral Organocatalysts
3.1 Chiral Phosphoric Acid Organocatalysts
3.2 Chiral Phosphinamide and Phosphoramide Organocatalysts
4 Chiral Ionic Liquid Organocatalysts
5 Chiral-Oxazoline-Based Organocatalysts
6 Conclusion and Outlook
Publikationsverlauf
Eingereicht: 16. September 2021
Angenommen nach Revision: 16. November 2021
Accepted Manuscript online:
16. November 2021
Artikel online veröffentlicht:
11. Januar 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
- 1b Trost BM, Curran DP. J. Am. Chem. Soc. 1981; 103: 7380
- 1c Crisp GT, Meyer AG. Tetrahedron 1995; 51: 5831
- 1d Danishefsky SJ, Masters JJ, Young WB, Link JT, Snyder LB, Magee TV, Jung DK, Isaacs RC. A, Bornmann WG, Alaimo CA, Coburn CA, Di Grandi MJ. J. Am. Chem. Soc. 1996; 118: 2843
- 1e Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. J. Am. Chem. Soc. 2018; 140: 9211
- 1f Sharpe RJ, Johnson JS. J. Org. Chem. 2015; 80: 9740
- 1g Yajima A. Tetrahedron Lett. 2014; 55: 2773
- 1h Zhang Y.-J, Zhang W.-X, Zheng G.-W, Xu J.-H. Adv. Synth. Catal. 2015; 357: 1697
- 1i Mulzer M, Tiegs BJ, Wang Y, Coates GW, O’Doherty GA. J. Am. Chem. Soc. 2014; 136: 10814
- 1j Nagasawa T, Kuwahara S. Org. Lett. 2009; 11: 761
- 1k Pfeiffer B, Speck-Gisler S, Barandun L, Senft U, de Groot C, Lehmann I, Ganci W, Gertsch J, Altmann K.-H. J. Org. Chem. 2013; 78: 2553
- 1l Chen Y, Lin H, Xu X, Xia S, Wang L. Adv. Synth. Catal. 2008; 350: 426
- 1m Michalak M, Stodulski M, Stecko S, Mames A, Panfil I, Soluch M, Furman B, Chmielewski M. J. Org. Chem. 2011; 76: 6931
- 1n Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
- 1o Vyas VK, Clarkson GJ, Wills M. Org. Lett. 2021; 23: 3179
- 2a Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
- 2b Klingler FD. Acc. Chem. Res. 2007; 40: 1367
- 2c Štefane B, Požgan F. Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones. In Hydrogenation. Karamé L. Intech Open; London: 2012
- 2d Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
- 2e Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
- 2f Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2015; 47: 460
- 2g Seo CS. G, Morris RH. Organometallics 2019; 38: 47
- 2h Ding Y.-X, Zhu Z.-H, Yu C.-B, Zhou Y.-G. Asian J. Org. Chem. 2020; 9: 1942
- 2i Baráth E. Synthesis 2020; 52: 504
- 2j Betancourt RM, Echeverria P.-G, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2021; 53: 30
- 2k Garbe M, Wei Z, Tannert B, Spannenberg A, Jiao H, Bachmann S, Scalone M, Junge K, Beller M. Adv. Synth. Catal. 2019; 361: 1913
- 3a Malacea R, Poli R, Manoury E. Coord. Chem. Rev. 2010; 254: 729
- 3b Riener K, Högerl MP, Gigler P, Kühn FE. ACS Catal. 2012; 2: 613
- 3c Yang X, Wang C. Chem. Asian J. 2018; 13: 2307
- 3d Darcel C, Sortais J.-B, Wei D, Bruneau-Voisine A. Non-Noble Metal Catalysis . Wiley-VCH; Weinheim: 2019: 241
- 3e Uvarov VM, de Vekki DA. J. Organomet. Chem. 2020; 923: 121415
- 4a Liu W, Lu Z. Chin. J. Org. Chem. 2020; 40: 3596
- 4b Wang R, Park S. ChemCatChem 2021; 13: 1898
- 4c Liu H, Eisen MS. Synthesis 2020; 52: 629
- 4d Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Angew. Chem. Int. Ed. 2021; 60: 5544
- 5 Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
- 6a Csuk R, Glanzer BI. Chem. Rev. 1991; 91: 49
- 6b Brooks DW, Mazdiyasni H, Grothaus PG. J. Org. Chem. 1987; 52: 3223
- 6c Moore JC, Pollard DJ, Kosjek B, Devine PN. Acc. Chem. Res. 2007; 40: 1412
- 6d Hoyos P, Sinisterra J.-V, Molinari F, Alcantara AS. R, Dominguez de María P. Acc. Chem. Res. 2010; 43: 288
- 7 Yeung Y.-Y, Chein R.-J, Corey EJ. J. Am. Chem. Soc. 2007; 129: 10346
- 8a Shende VS, Singh P, Bhanage BM. Catal. Sci. Technol. 2018; 8: 955
- 8b Chen W, Tan C.-H, Wang H, Ye X. Eur. J. Org. Chem. 2021; 3091
- 9a Deloux L, Srebnik M. Chem. Rev. 1993; 93: 763
- 9b Midland MM. Chem. Rev. 1989; 89: 1553
- 9c Kawanami Y, Yanagita RC. Molecules 2018; 23: 2408
- 10a Gupta KC, Sutar AK. Coord. Chem. Rev. 2008; 252: 1420
- 10b Wei Y, Zhang B.-L, Liu P, He W, Zhang S.-Y. Mini-Rev. Org. Chem. 2011; 8: 66
- 11 Kilic A, Durgun M, Durap F, Aydemir M. J. Organomet. Chem. 2019; 890: 1
- 12 Kilic A, Balci TE, Arslan N, Aydemir M, Durap F, Okumuş V, Tekin R. Appl. Organomet. Chem. 2020; 34: e5835
- 13 Paşa S, Arslan N, Merïç N, Kayan C, Bingül M, Durap F, Aydemir M. J. Mol. Struct. 2020; 1200: 127064
- 14 Midland MM, Tramontano A, Zderic SA. J. Am. Chem. Soc. 1977; 99: 5211
- 15a Midland MM, McDowell DC, Hatch RL, Tramontano A. J. Am. Chem. Soc. 1980; 102: 867
- 15b Brown HC, Pai GG. J. Org. Chem. 1985; 50: 1384
- 15c Midland MM, Lee PE. J. Org. Chem. 1985; 50: 3237
- 15d Brown HC, Ramachandran PV. J. Organomet. Chem. 1995; 500: 1
- 15e Murakami N, Nakajima T, Kobayashi M. Tetrahedron Lett. 2001; 42: 1941
- 15f Dussault PH, Eary CT, Woller KR. J. Org. Chem. 1999; 64: 1789
- 15g Walker JR, Curley RW. Jr. Tetrahedron 2001; 57: 6695
- 16 Nicholson K, Dunne J, DaBell P, Garcia AB, Bage AD, Docherty JH, Hunt TA, Langer T, Thomas SP. ACS Catal. 2021; 11: 2034
- 17 Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124
- 18a Paradies J. Angew. Chem. Int. Ed. 2014; 53: 3552
- 18b Stephan DW. Acc. Chem. Res. 2015; 48: 306
-
18c
Stephan DW,
Erker G.
Angew. Chem. Int. Ed. 2015; 54: 6400
- 18d Stephan DW. Science 2016; 354: aaf7229
- 18e Shi L, Zhou Y.-G. ChemCatChem 2015; 7: 54
- 18f Meng W, Feng X, Du H. Acc. Chem. Res. 2018; 51: 191
- 18g Meng W, Feng X, Du H. Chin. J. Chem. 2020; 38: 62
- 19a Mahdi T, Stephan DW. J. Am. Chem. Soc. 2014; 136: 15809
- 19b Mahdi T, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8511
- 19c Scott DJ, Fuchter MJ, Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
- 19d Gyömöre Á, Bakos M, Földes T, Pápai I, Domján A, Soós T. ACS Catal. 2015; 5: 5366
- 19e Scott DJ, Simmons TR, Lawrence EJ, Wildgoose GG, Fuchter MJ, Ashley AE. ACS Catal. 2015; 5: 5540
- 20 Ren X, Du H. J. Am. Chem. Soc. 2016; 138: 810
- 21 Liu X, Wang Q, Han C, Feng X, Du H. Chin. J. Chem. 2019; 37: 663
- 22 Wang Q, Han C, Feng X, Du H. Chin. J. Org. Chem. 2019; 39: 2257
- 23 Gao B, Feng X, Meng W, Du H. Angew. Chem. Int. Ed. 2020; 59: 4498
- 24 Burkhardt ER, Matos K. Chem. Rev. 2006; 106: 2617
- 25 Patil HS, Nikalje MD, Chopade AU, Chopade MU. Russ. J. Org. Chem. 2021; 57: 611
- 26a Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 26b Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 26c Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
- 26d Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
- 26e Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2013; 4: 603
- 26f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 27 Zhang Z, Jain P, Antilla JC. Angew. Chem. Int. Ed. 2011; 50: 10961
- 28 Zhang Y, He L, Shi L. Adv. Synth. Catal. 2018; 360: 1926
- 29 Zhou Q, Meng W, Feng X, Du H, Yang J. Tetrahedron 2020; 61: 151394
- 30 Wang B, Zhou H, Lu G, Liu Q, Jiang X. Org. Lett. 2017; 19: 2094
- 31 Liu Q, Wang C, Zhou H, Wang B, Lv J, Cao L, Fu Y. Org. Lett. 2018; 20: 971
- 32 Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 33 Qiao B, Li C, Zhao X, Yin Y, Jiang Z. Chem. Commun. 2019; 55: 7534
- 34a Burns B, Studley JR, Wills M. Tetrahedron Lett. 1993; 34: 7105
- 34b Burns B, Ring NP, Studley JR, Tye H, Wills M. Tetrahedron: Asymmetry 1994; 5: 801
- 34c Gamble MP, Studley JR, Wills M. Tetrahedron Lett. 1996; 37: 2853
- 34d Gamble MP, Studley JR, Wills M. Tetrahedron: Asymmetry 1996; 7: 3071
- 34e Hulst R, Heres H, Peper NC. M. W, Kellogg RM. Tetrahedron: Asymmetry 1996; 7: 1373
- 34f Burns B, Gamble MP, Simm AR. C, Studley JR, Alcock NW, Wills M. Tetrahedron: Asymmetry 1997; 8: 73
- 34g Burns B, King NP, Tye H, Studley JR, Gamble M, Wills M. J. Chem. Soc., Perkin Trans. 1 1998; 1027
- 34h Gamble MP, Smith AR. C, Wills M. J. Org. Chem. 1998; 63: 6068
- 34i Basavaiah D, Reddy GJ, Chandrashekar V. Tetrahedron: Asymmetry 2001; 12: 685
- 34j Li K, Zhou Z, Wang L, Chen Q, Zhao G, Zhou Q, Tang C. Tetrahedron: Asymmetry 2003; 14: 95
- 34k Li K.-Y, Zhou Z.-H, Wang L.-X, Zhao G.-F, Choi MC. K, Zhou Q.-L, Tang C.-C. Heteroat. Chem. 2003; 14: 288
- 34l Basavaiah D, Reddy GJ, Rao KV. Tetrahedron: Asymmetry 2004; 15: 1881
- 34m Basavaiah D, Reddy GJ, Chandrashekar V. Tetrahedron: Asymmetry 2004; 15: 47
- 34n Du D.-M, Fang T, Xu J, Zhang S.-W. Org. Lett. 2006; 8: 1327
- 35 Chen L.-Y, Tan D.-X, Han F.-S. Chin. J. Appl. Chem. in press DOI: 10.19894/j.issn.1000-0518.210114.
- 36a Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
- 36b Bao D.-H, Wu H.-L, Liu C.-L, Xie J.-H, Zhou Q.-L. Angew. Chem. Int. Ed. 2015; 54: 8791
- 36c Li J, Tang Y, Wang Q, Li X, Cun L, Zhang X, Zhu J, Li L, Deng J. J. Am. Chem. Soc. 2012; 134: 18522
- 36d Lin Z, Li J, Huang Q, Huang Q, Wang Q, Tang L, Gong D, Yang J, Zhu J, Deng J. J. Org. Chem. 2015; 80: 4419
- 36e Li J, Han J, Lin Z, Tang L, Huang Q, Wang Q, Zhu J, Deng J. Tetrahedron 2019; 75: 422
- 36f Zhang F.-H, Zhang F.-J, Li M.-L, Xie J.-H, Zhou Q.-L. Nat. Catal. 2020; 3: 621
- 37a Du Z.-J, Guan J, Wu G.-J, Xu P, Gao L.-X, Han F.-S. J. Am. Chem. Soc. 2015; 137: 632
- 37b Chen Y.-H, Qin X.-L, Han F.-S. Chem. Commun. 2017; 53: 5826
- 37c Chen Y.-H, Qin X.-L, Guan J, Du Z.-J, Han F.-S. Tetrahedron: Asymmetry 2017; 28: 522
- 38 Qin X.-L, Li A, Han F.-S. J. Am. Chem. Soc. 2021; 143: 2994
- 39 Themed issue on Ionic Liquids: Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R., Eds. Chem. Rev. 2017, 117, 6633–7240.
- 40 Singh A, Kaur N, Chopra HK. Crit. Rev. Anal. Chem. 2019; 49: 553
- 41 Singh A, Kaur N, Chopra HK. Curr. Org. Synth. 2018; 15: 578
- 42 Singh A, Chopra HK. J. Mol. Liq. 2018; 266: 106
- 43 Kaur N, Chopra HK. J. Mol. Liq. 2020; 298: 111994
- 44 Gondal HY, Mumtaz S, Abbaskhan A, Mumtaz N, Cano I. Chem. Pap. 2020; 74: 2951
- 45a Singh A, Chopra HK. Tetrahedron: Asymmetry 2017; 28: 414
- 45b Ning X.-S, Dong X.-J, Xiao Z.-F, Yao C.-Z, Kang Y.-B. Asian J. Org. Chem. 2015; 4: 333
- 46a Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: PR284
- 46b Carroll MP, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
- 46c Yang G, Zhang W. Chem. Soc. Rev. 2018; 47: 1783
- 47 Malkov AV, Liddon AJ. P. S, Ramírez-López P, Bendová L, Haigh D, Kočovský P. Angew. Chem. Int. Ed. 2006; 45: 1432
- 48 Cao Z, McCleary N, O’Leary P. Arkivok 2019; vi: 350