Hamostaseologie 2022; 42(01): 036-045
DOI: 10.1055/a-1700-7036
Review Article

Diagnosis of Platelet Function Disorders: A Challenge for Laboratories

Miriam Wagner
1   Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
,
Günalp Uzun
2   Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
,
Tamam Bakchoul
1   Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
2   Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
,
Karina Althaus
1   Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
2   Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
› Author Affiliations

Abstract

In patients with normal plasmatic coagulation and bleeding tendency, platelet function defect can be assumed. Congenital platelet function defects are rare. Much more commonly they are acquired. The clinical bleeding tendency of platelet function defects is heterogeneous, which makes diagnostic approaches difficult. During the years, a large variety of tests for morphological phenotyping and functional analysis have been developed. The diagnosis of platelet function defects is based on standardized bleeding assessment tools followed by a profound morphological evaluation of the platelets. Platelet function assays like light transmission aggregation, luminoaggregometry, and impedance aggregometry followed by flow cytometry are commonly used to establish the diagnosis in these patients. Nevertheless, despite great efforts, standardization of these tests is poor and in most cases, quality control is lacking. In addition, these tests are still limited to specialized laboratories. This review summarizes the approaches to morphologic phenotyping and platelet testing in patients with suspected platelet dysfunction, beginning with a standardized bleeding score and ending with flow cytometry testing. The diagnosis of a functional defect requires a good collaboration between the laboratory and the clinician.



Publication History

Received: 18 October 2021

Accepted: 17 November 2021

Article published online:
23 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Orsini S, Noris P, Bury L. et al; European Hematology Association - Scientific Working Group (EHA-SWG) on Thrombocytopenias and Platelet Function Disorders. Bleeding risk of surgery and its prevention in patients with inherited platelet disorders. Haematologica 2017; 102 (07) 1192-1203
  • 2 Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost 2012; 38 (08) 865-883
  • 3 Cattaneo M, Hayward CP, Moffat KA, Pugliano MT, Liu Y, Michelson AD. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: a report from the platelet physiology subcommittee of the SSC of the ISTH. J Thromb Haemost 2009; 7 (06) 1029
  • 4 Althaus K, Zieger B, Bakchoul T, Jurk K. THROMKID-Plus Studiengruppe der Gesellschaft für Thrombose- und Hämostaseforschung (GTH) und der Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH). Standardization of light transmission aggregometry for diagnosis of platelet disorders: an inter-laboratory external quality assessment. Thromb Haemost 2019; 119 (07) 1154-1161
  • 5 Cattaneo M, Cerletti C, Harrison P. et al. Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost 2013; 10 (Apr);
  • 6 The British Society for Haematology BCSH Haemostasis and Thrombosis Task Force. Guidelines on platelet function testing. J Clin Pathol 1988; 41 (12) 1322-1330
  • 7 Konkle BA. Acquired disorders of platelet function. Hematology (Am Soc Hematol Educ Program) 2011; 2011: 391-396
  • 8 Olas B. Dietary supplements with antiplatelet activity: a solution for everyone?. Adv Nutr 2018; 9 (01) 51-57
  • 9 Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2021; 48: 100784
  • 10 Rodeghiero F, Tosetto A, Abshire T. et al; ISTH/SSC Joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost 2010; 8 (09) 2063-2065
  • 11 Rodeghiero F, Pabinger I, Ragni M. et al. Fundamentals for a systematic approach to mild and moderate inherited bleeding disorders: an EHA consensus report. HemaSphere 2019; 3 (04) e286
  • 12 Vries MJ, van der Meijden PE, Kuiper GJ. et al. Preoperative screening for bleeding disorders: a comprehensive laboratory assessment of clinical practice. Res Pract Thromb Haemost 2018; 2 (04) 767-777
  • 13 Ambaglio C, Zane F, Russo MC. et al. Preoperative bleeding risk assessment with ISTH-BAT and laboratory tests in patients undergoing elective surgery: a prospective cohort study. Haemophilia 2021; 27 (05) 717-723
  • 14 Koscielny J, Ziemer S, Radtke H. et al. A practical concept for preoperative identification of patients with impaired primary hemostasis. Clin Appl Thromb Hemost 2004; 10 (03) 195-204
  • 15 Althaus K, Greinacher A. MYH9-related platelet disorders. Semin Thromb Hemost 2009; 35 (02) 189-203
  • 16 Bury L, Megy K, Stephens JC. et al. Next-generation sequencing for the diagnosis of MYH9-RD: predicting pathogenic variants. Hum Mutat 2020; 41 (01) 277-290
  • 17 Greinacher A, Pecci A, Kunishima S. et al. Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. J Thromb Haemost 2017; 15 (07) 1511-1521
  • 18 Mielke Jr CH, Kaneshiro MM, Maher IA, Weiner JM, Rapaport SI. The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 1969; 34 (02) 204-215
  • 19 Peterson P, Hayes TE, Arkin CF. et al. The preoperative bleeding time test lacks clinical benefit: College of American Pathologists' and American Society of Clinical Pathologists' position article. Arch Surg 1998; 133 (02) 134-139
  • 20 Gewirtz AS, Kottke-Marchant K, Miller ML. The preoperative bleeding time test: assessing its clinical usefulness. Cleve Clin J Med 1995; 62 (06) 379-382
  • 21 Franchini M. The platelet function analyzer (PFA-100): an update on its clinical use. Clin Lab 2005; 51 (7-8): 367-372
  • 22 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
  • 23 Ardillon L, Ternisien C, Fouassier M. et al. Platelet function analyser (PFA-100) results and von Willebrand factor deficiency: a 16-year ‘real-world’ experience. Haemophilia 2015; 21 (05) 646-652
  • 24 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 25 Bowbrick VA, Mikhailidis DP, Stansby G. Value of thromboelastography in the assessment of platelet function. Clin Appl Thromb Hemost 2003; 9 (02) 137-142
  • 26 Ranucci M, Baryshnikova E. Sensitivity of viscoelastic tests to platelet function. J Clin Med 2020; 9 (01) E189
  • 27 Tóth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost 2006; 96 (06) 781-788
  • 28 Collet JP, Cuisset T, Rangé G. et al; ARCTIC Investigators. Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N Engl J Med 2012; 367 (22) 2100-2109
  • 29 Trenk D, Stone GW, Gawaz M. et al. A randomized trial of prasugrel versus clopidogrel in patients with high platelet reactivity on clopidogrel after elective percutaneous coronary intervention with implantation of drug-eluting stents: results of the TRIGGER-PCI (Testing Platelet Reactivity In Patients Undergoing Elective Stent Placement on Clopidogrel to Guide Alternative Therapy With Prasugrel) study. J Am Coll Cardiol 2012; 59 (24) 2159-2164
  • 30 Price MJ, Berger PB, Teirstein PS. et al; GRAVITAS Investigators. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 2011; 305 (11) 1097-1105
  • 31 Valgimigli M, Bueno H, Byrne RA. et al; ESC Scientific Document Group, ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018; 39 (03) 213-260
  • 32 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 33 Hayward CP, Moffat KA, Raby A. et al. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am J Clin Pathol 2010; 134 (06) 955-963
  • 34 Gresele P, Harrison P, Bury L. et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (09) 1562-1569
  • 35 Cattaneo M, Lecchi A, Zighetti ML, Lussana F. Platelet aggregation studies: autologous platelet-poor plasma inhibits platelet aggregation when added to platelet-rich plasma to normalize platelet count. Haematologica 2007; 92 (05) 694-697
  • 36 Cattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost 2009; 35 (02) 158-167
  • 37 Carmody MW, Ault KA, Mitchell JG, Rote NS, Ng AK. Production of monoclonal antibodies specific for platelet activation antigens and their use in evaluating platelet function. Hybridoma 1990; 9 (06) 631-641
  • 38 Aiken ML, Ginsberg MH, Plow EF. Mechanisms for expression of thrombospondin on the platelet cell surface. Semin Thromb Hemost 1987; 13 (03) 307-316
  • 39 Henn V, Slupsky JR, Gräfe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594
  • 40 Wall JE, Buijs-Wilts M, Arnold JT. et al. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 1995; 89 (02) 380-385
  • 41 Manukjan G, Eilenberger J, Andres O, Schambeck C, Eber S, Schulze H. Functional classification of paediatric patients with non-syndromic delta-storage pool deficiency. Hamostaseologie 2019; 39 (04) 383-391
  • 42 Nieuwenhuis HK, van Oosterhout JJ, Rozemuller E, van Iwaarden F, Sixma JJ. Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53,000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 1987; 70 (03) 838-845
  • 43 Nishibori M, Cham B, McNicol A, Shalev A, Jain N, Gerrard JM. The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest 1993; 91 (04) 1775-1782
  • 44 Israels SJ, McMillan EM, Robertson C, Singhory S, McNicol A. The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thromb Haemost 1996; 75 (04) 623-629
  • 45 Febbraio M, Silverstein RL. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem 1990; 265 (30) 18531-18537
  • 46 Aliotta A, Bertaggia Calderara D, Alberio L. Flow cytometric monitoring of dynamic cytosolic calcium, sodium, and potassium fluxes following platelet activation. Cytometry A 2020; 97 (09) 933-944
  • 47 Althaus K, Wagner M, Marini I, Bakchoul T, Pelzl L. Flow cytometric assessment of AKT signaling in platelet activation: an alternative diagnostic tool for small volumes of blood. Hamostaseologie 2020; 40 (S 01) S21-S25
  • 48 Abbasian N, Millington-Burgess SL, Chabra S, Malcor JD, Harper MT. Supramaximal calcium signaling triggers procoagulant platelet formation. Blood Adv 2020; 4 (01) 154-164
  • 49 Walter U, Geiger J, Haffner C. et al. Platelet-vessel wall interactions, focal adhesions, and the mechanism of action of endothelial factors. Agents Actions Suppl 1995; 45: 255-268
  • 50 Althaus K, Marini I, Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021; 137 (08) 1061-1071
  • 51 Althaus K, Möller P, Uzun G. et al. Antibody-mediated procoagulant platelets in SARS-CoV-2-vaccination associated immune thrombotic thrombocytopenia. Haematologica 2021; 106 (08) 2170-2179
  • 52 Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. BRIDGE-BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 53 Pecci A, Panza E, Pujol-Moix N. et al. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 2008; 29 (03) 409-417
  • 54 Tanaka M, Miki S, Saita H. et al. Renin-angiotensin system blockade therapy for early renal involvement in MYH9-related disease with an E1841K mutation. Intern Med 2019; 58 (20) 2983-2988
  • 55 Porter CC. Germ line mutations associated with leukemias. Hematology (Am Soc Hematol Educ Program) 2016; 2016 (01) 302-308
  • 56 Althaus K, Wagner M, Bakchoul T. Diagnose der Thrombozytenfunktionsstörungen – eine Herausforderung im Labor. [The diagnosis of platelet function disorders – a challenge in the laboratory.]. Transfusionsmedizin 2019; 9 (02) 96-108