Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(03): 264-268
DOI: 10.1055/a-1704-4822
DOI: 10.1055/a-1704-4822
letter
Synthesis of C3-Cyanomethylated Imidazo[1,2-a]pyridines via Ultrasound-Promoted Three-Component Reaction under Catalyst- and Oxidant-Free Conditions
This work was supported by the PhD research startup foundation of Jiangsu Agri-animal Husbandry Vocational College (NSF2021CB06), the Research Innovation Program for College Students of Jiangsu Province (202112806014Y), the Animal medicine science and technology innovation team of Jiangsu Agri-animal Husbandry Vocational College (NSF2021TC02) and the Natural Science Foundation of Jiangsu Higher Education Institutions (21KJB150008).
Abstract
An efficient synthesis of C3-cyanomethylated imidazo[1,2-a]pyridines via ultrasound-promoted three-component reaction under catalyst-free, oxidant-free, and mild conditions has been developed. A series of C3-cyanomethylated imidazo[1,2-a]pyridines were rapidly prepared with satisfactory yields and good functional group compatibility. This strategy cloud also be applied to the synthesis of zolpidem and alpidem in short steps.
Key words
ultrasonic irradiation - three-component reaction - cyanomethylation - imidazopyridines - catalyst- and oxidant-freeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1704-4822.
- Supporting Information
Publication History
Received: 09 November 2021
Accepted after revision: 23 November 2021
Accepted Manuscript online:
23 November 2021
Article published online:
14 January 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Mizushige K, Ueda T, Yukiiri K, Suzuki H. Cardiovasc. Drugs Rev. 2002; 20: 163
- 1b Enguehard-Gueiffier C, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
- 1c Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555
- 1d Goel R, Luxami V, Paul K. RSC Adv. 2015; 5: 81608
- 1e Bagdi AK, Hajra A. Org. Biomol. Chem. 2020; 18: 2611
- 2a Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem. 2017; 19: 4785
- 2b Mi X, Kong Y, Zhang J, Pi C, Cui X. Chin. Chem. Lett. 2019; 30: 2295
- 2c Feng M.-L, Li S.-Q, He H.-Z, Xi L.-Y, Chen S.-Y, Yu X.-Q. Green Chem. 2019; 21: 1619
- 2d Li B, Shen N, Zhang X, Fan X. Org. Biomol. Chem. 2019; 17: 9140
- 2e Singsardar M, Mondal S, Laru S, Hajra A. Org. Lett. 2019; 21: 5606
- 2f Zhu Y.-S, Xue Y, Liu W, Zhu X, Hao X.-Q, Song M.-P. J. Org. Chem. 2020; 85: 9106
- 2g Li X.-Y, Liu Y, Chen X.-L, Lu X.-Y, Liang X.-X, Zhu S.-S, Wei C.-W, Qu L.-B, Yu B. Green Chem. 2020; 22: 4445
- 2h Wen J, Niu C, Yan K, Cheng X, Gong R, Li M, Guo Y, Yang J, Wang H. Green Chem. 2020; 22: 1129
- 2i Zhong P.-F, Lin H.-M, Wang L.-W, Mo Z.-Y, Meng X.-J, Tang H.-T, Pan Y.-M. Green Chem. 2020; 22: 6334
- 2j Jiang H, Guo D, Zhang Y, Shen Q.-P, Tang S, You J, Huo Y, Wang H, Cui Q.-W. Synthesis 2020; 52: 2713
- 3a Su H, Wang L, Rao H, Xu H. Org. Lett. 2017; 19: 2226
- 3b Chang Q, Liu Z, Liu P, Sun P. J. Org. Chem. 2017; 82: 5391
- 3c Chen G, Li B, Hu B, Zhang X, Fan X. Tetrahedron Lett. 2020; 61: 151774
- 3d Tong J, Zhan Y, Li J, Liu P, Sun P. Eur. J. Org. Chem. 2021; 4541
- 4a Allen J, Tizot A. J. Labelled Compd. Radiopharm. 1986; 23: 393
- 4b Katsifis A, Mattner F, Zhang Z, Dikic B, Papazian V. J. Labelled Compd. Radiopharm. 2000; 43: 385
- 4c Jasty AM, Tamma RR, Mohanarangam S, Yasareni S, Rupakala GS, Debashish G. US20070027180, 2007
- 4d Sumalatha Y, Reddy TR, Reddy PP, Satyanarayana B. ARKIVOC 2009; (ii): 315
-
5a
Ping Y,
Ding Q,
Peng Y.
ACS Catal. 2016; 6: 5989
- 5b Nauth AM, Opatz T. Org. Biomol. Chem. 2019; 17: 11
- 6 Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. Eur. J. Org. Chem. 2020; 269
- 7a de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
- 7b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 7c Brauch S, van Berkel SS, Westermann B. Chem. Soc. Rev. 2013; 42: 4948
- 7d Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 8a Zhao X, Ding Y, Lv Y, Kang C. Chin. J. Org. Chem. 2019; 39: 1304
- 8b Groebke K, Weber L, Mehlin F. Synlett 1998; 661
- 8c Varma RS, Kumar D. Tetrahedron Lett. 1999; 40: 7665
- 8d Baker BJ. M, Kerr WJ, Lindsay DM, Patel VK, Poole DL. Green Chem. 2021; 23: 280
- 8e Singh HK, Kamal A, Kumari S, Kumar D, Maury SK, Srivastava V, Singh S. ACS Omega 2020; 5: 29854
- 8f Chernyak N, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2743
- 8g Liu P, Fang L.-S, Lei X, Lin G.-Q. Tetrahedron Lett. 2010; 51: 4605
- 8h Reddy BV. S, Reddy PS, Reddy YJ, Yadav JS. Tetrahedron Lett. 2011; 52: 5789
- 8i Wen Q, Lu P, Wang Y. Chem. Commun. 2015; 51: 15378
- 8j Abarghooei MA, Mohebata R, Karimi-Jaberi Z, Mosslemin MH. Catal. Commun. 2018; 105: 59
- 8k Kamal A, Reddy CN, Satyaveni M, Chandrasekhar D, Nanubolu JB, Singarapu KK, Maurya RA. Chem. Commun. 2015; 51: 10475
- 8l Roslan II, Ng K.-H, Alhooshani KR, Jaenicke S, Chuah G.-K. Asian J. Org. Chem. 2021; 10: 554
- 8m Kundu S, Basu B. RSC Adv. 2015; 46: 50178
- 8n Jiang N, Fang Y, Fang Y, Wang S.-Y, Ji S.-J. Org. Chem. Front. 2019; 6: 654
- 8o Gui Q.-W, Wang B.-B, Zhu S, Li F.-L, Zhu M.-X, Yi M, Yu J.-L, Wu Z.-L, He W.-M. Green Chem. 2021; 23: 4430
- 9a Mason TJ. Chem. Soc. Rev. 1997; 26: 443
- 9b Cravotto G, Cintas P. Chem. Soc. Rev. 2006; 35: 180
- 9c Mason TJ. Ultrason. Sonochem. 2007; 14: 476
- 9d Chatel G, Varma RS. Green Chem. 2019; 21: 6043
- 10a Penteado F, Monti B, Sancineto L, Perin G, Jacob RG, Santi C, Lenardão EJ. Asian J. Org. Chem. 2018; 7: 2368
- 10b Mohammadi Ziarani G, Kheilkordi Z, Gholamzadeh P. Mol. Diversity 2020; 24: 771
- 10c Basavegowda N, Mishra K, Lee YR. New J. Chem. 2015; 39: 972
- 10d Moghaddam FM, Goudarzi M, Chamani F, Dezag HM. New J. Chem. 2020; 44: 9699
- 10e Peglow TJ, Costa GP. D, Duarte LF. B, Silva MS, Barcellos T, Perin G, Alves D. J. Org. Chem. 2019; 84: 5471
- 10f Alizadeh A, Farajpour B, Knedel TO, Janiak C. J. Org. Chem. 2021; 86: 574
- 11 Nair DK, Mobin SM, Namboothiri IN. N. Org. Lett. 2012; 14: 4580
- 12 Wang Z, Ayarza J, Esser-Kahn AP. Angew. Chem. Int. Ed. 2019; 58: 12023
- 13 General Procedure for the Preparation of Representative Compound 2-(2-Phenylimidazo[1,2-a]pyridin-3-yl)acetonitrile (3a) To a sealed tube were added 2-aminopyridine (1a, 18.8 mg, 0.2 mmol), α-bromoacetophenone (1b, 39.8 mg, 0.2 mmol, 1.0 equiv), bromoacetonitrile (48.0 mg, 0.4 mmol, 2.0 equiv), K2CO3 (55.3 mg, 0.4 mmol, 2.0 equiv), and DMF (2 mL). The reaction mixture was stirred at r.t. under ultrasound irradiation for 30 min. After the reaction was completed, the resulting residue was diluted with EtOAc (10 mL). The organic layer was washed with water (15 mL) in sequence. The aqueous phase was extracted with EtOAc (5 mL). The combined organic layers were dried over Na2SO4 and concentrated under vacuum, and the resulting residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate (2:1) as eluent to afford the desired product 3a. White solid (39.6 mg, 85% yield); mp 101–103 °C. 1H NMR (400 MHz, CDCl3): δ = 8.04 (dt, J = 6.9, 1.2 Hz, 1 H), 7.71–7.67 (m, 3 H), 7.50 (t, J = 7.4 Hz, 2 H), 7.44–7.40 (m, 1 H), 7.33–7.29 (m, 1 H), 7.00–6.96 (m, 1 H), 4.14 (s, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 145.8, 145.5, 133.5, 129.4, 129.0, 128.9, 125.8, 123.3, 118.4, 115.4, 113.8, 108.2, 14.3 ppm.
For selected reviews, see:
For selected reviews, see:
For selected reviews and examples, see:
For selected reviews, see:
For selected reviews and examples, see: