Subscribe to RSS
DOI: 10.1055/a-1709-1310
Embryonic Development of the Orbit
Die embryologische Entwicklung der Orbita
Abstract
The embryonic and fetal development of the orbit comprises a series of sequential events, starting with the fertilization of the ovum and extending until birth. Most of the publications dealing with orbital morphogenesis describe the sequential development of each germinal layer, the ectoderm with its neuroectoderm derivative and the mesoderm. This approach provides a clear understanding of the mode of development of each layer but does not give the reader a general picture of the structure of the orbit within any specified time frame. In order to enhance our understanding of the developmental anatomy of the orbit, the authors have summarized the recent developments in orbital morphogenesis, a temporally precise and morphogenetically intricate process. Understanding this multidimensional process of development in prenatal life, identifying and linking signaling cascades, as well as the regulatory genes linked to existing diseases, may pave the way for advanced molecular diagnostic testing, developing minimally invasive interventions, and the use of progenitor/stem cell and even regenerative therapy.
Zusammenfassung
Die embryologische und fetale Entwicklung der Orbita umfasst eine Reihe aufeinanderfolgender, streng regulierter morphogenetischer Entwicklungsschritte, die mit der Befruchtung der Eizelle beginnen und sich von diesem Zeitpunkt an bis zur Geburt erstrecken. Die meisten Veröffentlichungen/Publikationen, die sich mit der Orbitamorphogenese befassen, beschreiben die sequenzielle Entwicklung jeder Keimschicht, des Ektoderms mit seinem Neuroektodermderivat und des Mesoderms. Das vermittelt ein klares Verständnis des Entwicklungsmodus jeder Schicht, gibt jedoch dem Leser kein allgemeines Bild von den Strukturen, deren Entwicklung in einem bestimmten Zeitrahmen vollständig/abgeschlossen wäre. Zum besseren Verständnis der Entwicklungsanatomie der Orbita haben die Autoren die jüngsten Entwicklungen in der Orbitamorphogenese, einem zeitlich präzisen, multifaktoriellen und morphogenetisch komplizierten Prozess, zusammengefasst. Das Verständnis dieses multidimensionalen Entwicklungsprozesses im pränatalen Leben, die Identifizierung und Verknüpfung von Signalkaskaden und regulatorischen Genen mit bestehenden Krankheiten können den Weg für eine fortschrittliche molekulare Diagnostik, die Entwicklung minimalinvasiver Interventionen und den Einsatz von Vorläufer-/Stammzellen und sogar regenerativer Therapie ebnen.
Publication History
Received: 11 August 2021
Accepted: 25 November 2021
Article published online:
04 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Som PM, Naidich TP. Illustrated review of the embryology and development of the facial region, part 1: Early face and lateral nasal cavities. AJNR Am J Neuroradiol 2013; 34: 2233-2240
- 2 Harkness LM, Baird DT. Morphological and molecular characteristics of living human fetuses between Carnegie stages 7 and 23: developmental stages in the post-implantation embryo. Hum Reprod Update 1997; 3: 3-23
- 3 Keller R, Shih J, Sater AK. et al. Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn 1992; 193: 218-234
- 4 Sadler TW. Embryology of neural tube development. Am J Med Genet C Semin Med Genet 2005; 135C: 2-8
- 5 OʼRahilly R, Muller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 2010; 192: 73-84
- 6 Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4: 806-818
- 7 Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat 2005; 207: 575-601
- 8 Koch KR, Ortmann M, Heindl LM. Conjunctival Mucoepidermoid Carcinoma. Ophthalmology 2016; 123: 616
- 9 Tawfik HA, Dutton JJ. Embryologic and Fetal Development of the Human Orbit. Ophthalmic Plast Reconstr Surg 2018; 34: 405-421
- 10 Tawfik HA, Abdulhafez MH, Fouad YA. et al. Embryologic and Fetal Development of the Human Eyelid. Ophthalmic Plast Reconstr Surg 2016; 32: 407-414
- 11 Langenberg T, Kahana A, Wszalek JA. et al. The eye organizes neural crest cell migration. Dev Dyn 2008; 237: 1645-1652
- 12 Berger AJ, Kahn D. Growth and development of the orbit. Oral Maxillofac Surg Clin North Am 2012; 24: 545-555
- 13 Catala M. [Embryology of the sphenoid bone]. J Neuroradiol 2003; 30: 196-200
- 14 Catala M, Khonsari RH, Paternoster G. et al. [Development and growth of the vault of the skull]. Neurochirurgie 2019; 65: 210-215
- 15 Mullan S, Mojtahedi S, Johnson DL. et al. Embryological basis of some aspects of cerebral vascular fistulas and malformations. J Neurosurg 1996; 85: 1-8
- 16 Hayreh SS. Orbital vascular anatomy. Eye (Lond) 2006; 20: 1130-1144
- 17 Saint-Geniez M, DʼAmore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 2004; 48: 1045-1058
- 18 OʼRahilly R. The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol (Berl) 1983; 168: 87-99
- 19 Mullan S. Reflections upon the nature and management of intracranial and intraspinal vascular malformations and fistulae. J Neurosurg 1994; 80: 606-616
- 20 Muller F, OʼRahilly R. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos. Cells Tissues Organs 2011; 193: 215-238
- 21 Barlow LA. Cranial nerve development: placodal neurons ride the crest. Curr Biol 2002; 12: R171-R173
- 22 Yamaguchi K, Honma K. Development of the human abducens nucleus: a morphometric study. Brain Dev 2012; 34: 712-718
- 23 Cordes SP. Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2001; 2: 611-623
- 24 Lumsden A, Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature 1989; 337: 424-428
- 25 Lee VM, Sechrist JW, Luetolf S. et al. Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Dev Biol 2003; 263: 176-190
- 26 Barishak YR. Embryology of the eye and its adnexae. Dev Ophthalmol 1992; 24: 1-142
- 27 Heindl LM, Trester M, Guo Y. et al. Anxiety and depression in patients wearing prosthetic eyes. Graefes Arch Clin Exp Ophthalmol 2021; 259: 495-503
- 28 Carstens MH. Development of the facial midline. J Craniofac Surg 2002; 13: 129-187 discussion 188–190
- 29 Burdi AR, Lawton TJ, Grosslight J. Prenatal pattern emergence in early human facial development. Cleft Palate J 1988; 25: 8-15
- 30 Vacher C, Copin H, Sakka M. Maxillary ossification in a series of six human embryos and fetuses aged from 9 to 12 weeks of amenorrhea: clinical implications. Surg Radiol Anat 1999; 21: 261-266
- 31 Koornneef L. The development of the connective tissue in the human orbit. Acta Morphol Neerl Scand 1976; 14: 263-290
- 32 Bohnsack BL, Gallina D, Thompson H. et al. Development of extraocular muscles requires early signals from periocular neural crest and the developing eye. Arch Ophthalmol 2011; 129: 1030-1041
- 33 Daich Varela M, Huryn LA, Hufnagel RB. et al. Ocular and Systemic Findings in Adults with Uveal Coloboma. Ophthalmology 2020; 127: 1772-1774
- 34 Hayreh SS. Arteries of the Orbit in the Human Being. Br J Surg 1963; 50: 938-953
- 35 Padget DH. The cranial venous system in man in reference to development, adult configuration, and relation to the arteries. Am J Anat 1956; 98: 307-355
- 36 Louw L. Different ophthalmic artery origins: Embryology and clinical significance. Clin Anat 2015; 28: 576-583
- 37 Bahn CF, Falls HF, Varley GA. et al. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology 1984; 91: 558-563
- 38 Deiner MS, Kennedy TE, Fazeli A. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 1997; 19: 575-589
- 39 Katori Y, Rodriguez-Vazquez JF, Kawase T. et al. Early fetal development of hard tissue pulleys for the human superior oblique and tensor veli palatini muscles. Ann Anat 2011; 193: 127-133
- 40 de la Cuadra-Blanco C, Peces-Pena MD, Merida-Velasco JR. Morphogenesis of the human lacrimal gland. J Anat 2003; 203: 531-536
- 41 Makarenkova HP, Dartt DA. Myoepithelial Cells: Their Origin and Function in Lacrimal Gland Morphogenesis, Homeostasis, and Repair. Curr Mol Biol Rep 2015; 1: 115-123
- 42 Captier G, Cristol R, Montoya P. et al. Prenatal organization and morphogenesis of the sphenofrontal suture in humans. Cells Tissues Organs 2003; 175: 98-104
- 43 Rodríguez Vázquez JF, Mérida Velasco JR, Jiménez Collado J. Orbital muscle of Müller: observations on human fetuses measuring 35–150 mm. Acta Anat (Basel) 1990; 139: 300-303
- 44 Sevel D. The origins and insertions of the extraocular muscles: development, histologic features, and clinical significance. Trans Am Ophthalmol Soc 1986; 84: 488-526
- 45 Macdonald R, Barth KA, Xu Q. et al. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 1995; 121: 3267-3278
- 46 Zuber ME, Gestri G, Viczian AS. et al. Specification of the vertebrate eye by a network of eye field transcription factors. Development 2003; 130: 5155-5167