Subscribe to RSS
DOI: 10.1055/a-1709-3426
Chemoselective Reduction of Tertiary Amides by 1,3-Diphenyldisiloxane (DPDS)
Abstract
A convenient procedure for the chemoselective reduction of tertiary amides at room temperature in the presence of air and moisture using 1,3-diphenyldisiloxane (DPDS) is developed. The reaction conditions tolerate a significant number of functional groups including esters, nitriles, secondary amides, carbamates, sulfoxides, sulfones, sulfonyl fluorides, halogens, aryl-nitro groups, and arylamines. The conditions reported are the mildest to date and utilize EtOAc, a preferred solvent given its excellent safety profile and lower environmental impact. The ease of setup and broad chemoselectivity make this method attractive for organic synthesis, and the results further demonstrate the utility of DPDS as a selective reducing agent.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1709-3426.
- Supporting Information
Publication History
Received: 16 October 2021
Accepted after revision: 30 November 2021
Accepted Manuscript online:
30 November 2021
Article published online:
26 January 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Borch RF, Bernstein MD, Durst HD. J. Am. Chem. Soc. 1971; 93: 2897
- 1b Brown HC, Min Yoon N. J. Am. Chem. Soc. 1966; 88: 1464
- 1c Gaylord NG. J. Chem. Educ. 1957; 34: 367
- 2a Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem. Int. Ed. 2009; 48: 9507
- 2b Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2010; 132: 1770
- 2c Das S, Addis D, Junge K, Beller M. Chem. Eur. J. 2011; 17: 12186
- 2d Dombray T, Helleu C, Darcel C, Sortais J.-B. Adv. Synth. Catal. 2013; 355: 3358
- 2e Bézier D, Venkanna GT, Sortais J.-B, Darcel C. ChemCatChem 2011; 3: 1747
- 2f Hale DJ, Murphy LJ, McDonald R, Ferguson MJ, Turculet L. ChemCatChem 2019; 11: 3818
- 2g Kovalenko OO, Volkov A, Adolfsson H. Org. Lett. 2015; 17: 446
- 2h Nurseiit A, Janabel J, Gudun KA, Kassymbek A, Segizbayev M, Seilkhanov TM, Khalimon AY. ChemCatChem 2019; 11: 790
- 2i Simmons BJ, Hoffmann M, Hwang J, Jackl MK, Garg NK. Org. Lett. 2017; 19: 1910
- 2j Volkov A, Buitrago E, Adolfsson H. Eur. J. Org. Chem. 2013; 2066
- 3 Wells AS. Org. Process Res. Dev. 2010; 14: 484
- 4a Addis D, Das S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 6004
- 4b Blanchet J, Chardon A, Morisset E, Rouden J. Synthesis 2018; 50: 984
- 4c Díez-González S, Nolan SP. Org. Prep. Proced. Int. 2007; 39: 523
- 4d Volkov A, Tinnis F, Slagbrand T, Trillo P, Adolfsson H. Chem. Soc. Rev. 2016; 45: 6685
- 5 Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M. Green Chem. 2008; 10: 31
- 6 Buonomo JA, Eiden CG, Aldrich CC. Chem. Eur. J. 2017; 23: 14434
- 7 Buonomo JA, Eiden CG, Aldrich CC. Synthesis 2018; 50: 278
- 8 Buonomo JA, Cole MS, Eiden CG, Aldrich CC. Synthesis 2020; 52: 3583
- 9 Aycock DF. Org. Process Res. Dev. 2007; 11: 156
- 10 Arkles B, Pan Y, Larson GL, Singh M. Chem. Eur. J. 2014; 20: 9442
- 11 Petit C, Poli E, Favre-Réguillon A, Khrouz L, Denis-Quanquin S, Bonneviot L, Mignani G, Lemaire M. ACS Catal. 2013; 3: 1431
- 12 Zhang W, Dong X, Zhao W. Org. Lett. 2011; 13: 5386
- 13 Hanada S, Tsutsumi E, Motoyama Y, Nagashima H. J. Am. Chem. Soc. 2009; 131: 15032
- 14 Pete B, Szántay C. ARKIVOC 2009; (vi): 78
- 15 Molander GA, Sandrock DL. Org. Lett. 2007; 9: 1597
- 16 Le Gall E, Decompte A, Martens T, Troupel M. Synthesis 2010; 249
- 17 Varala R, Nuvula S, Adapa SR. J. Org. Chem. 2006; 71: 8283
- 18 Bagal DB, Watile RA, Khedkar MV, Dhake KP, Bhanage BM. Catal. Sci. Technol. 2012; 2: 354
- 19 Xiang S.-H, Xu J, Yuan H.-Q, Huang P.-Q. Synlett 2010; 1829