RSS-Feed abonnieren
DOI: 10.1055/a-1712-0912
Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols
This work was supported by the National Natural Science Foundation of China (grant nos. 21801193, 21871213, 22071189).
Abstract
The kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.
1 Introduction
2 Organocatalysis
2.1 Peptide Catalyst
2.2 Chiral Phosphoric Acid Catalyst
2.3 Chiral Lewis Base Catalyst
2.4 Chiral Quaternary Ammonium Salt Catalyst
3 Metal Catalysis
3.1 Mixed La-Li Heterobimetallic Catalyst
3.2 Rh Catalyst
3.3 Hf Catalyst
3.4 Pd Catalyst
3.5 Cu Catalyst
3.6 Ag Catalyst
4 Conclusion and Outlook
Key words
kinetic resolution - nonenzymatic - tertiary alcohols - organocatalysis - metal catalysis - asymmetric synthesisPublikationsverlauf
Eingereicht: 04. November 2021
Angenommen nach Revision: 02. Dezember 2021
Accepted Manuscript online:
02. Dezember 2021
Artikel online veröffentlicht:
26. Januar 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Koskinen A. In Asymmetric Synthesis of Natural Products . John Wiley & Sons; New York: 1993
- 1b Blaser HU, Spindler F, Studer M. Appl. Catal., A 2001; 221: 119
- 1c Noyori R. Adv. Synth. Catal. 2003; 345: 15
- 1d Farina V, Reeves JT, Senanayake CH, Song JJ. Chem. Rev. 2006; 106: 2734
- 2a Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
- 2b Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 2c Muller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
- 2d Krasnov VP, Gruzdev DA, Levit GL. Eur. J. Org. Chem. 2012; 2012: 1471
- 2e Pellissier H. Adv. Synth. Catal. 2011; 353: 1613
- 2f Kreituss I, Bode JW. Acc. Chem. Res. 2016; 49: 2807
- 2g Petersen KS. Asian J. Org. Chem. 2016; 5: 308
- 2h Chen S, Shi YH, Wang M. Chem. Asian J. 2018; 13: 2184
- 2i Wang Z, Pan D, Li T, Jin Z. Chem. Asian J. 2018; 13: 2149
- 2j Liu W, Yang X. Asian J. Org. Chem. 2021; 10: 692
- 3a Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
- 3b Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
- 4a France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
- 4b Yang H, Zheng W.-H. Tetrahedron Lett. 2018; 59: 583
- 5a List B, Shabat D, Zhong G, Turner JM, Li A, Bui T, Anderson J, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 1999; 121: 7283
- 5b Özdemirhan D, Sezer S, Sönmez Y. Tetrahedron: Asymmetry 2008; 19: 2717
- 5c Özdemirhan D. Synth. Commun. 2017; 47: 629
- 5d Deng D, Zhang Y, Sun A, Sai K, Hu Y. Chin. J. Org. Chem. 2018; 38: 1185
- 6 Pellissier H. Tetrahedron 2018; 74: 3459
- 7a Karatas B, Rendler S, Frohlich R, Oestreich M. Org. Biomol. Chem. 2008; 6: 1435
- 7b Schipper DJ, Rousseaux S, Fagnou K. Angew. Chem. Int. Ed. 2009; 48: 8343
- 8a Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
- 8b Zhan G, Du W, Chen YC. Chem. Soc. Rev. 2017; 46: 1675
- 8c van der Helm MP, Klemm B, Eelkema R. Nat. Rev. Chem. 2019; 3: 491
- 8d Kristofikova D, Modrocka V, Meciarova M, Sebesta R. ChemSusChem 2020; 13: 2828
- 8e Xiang SH, Tan B. Nat. Commun. 2020; 11: 3786
-
8f
Han B,
He XH,
Liu YQ,
He G,
Peng C,
Li JL.
Chem. Soc. Rev. 2021; 50: 1522
- 9a List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 9b List B. J. Am. Chem. Soc. 2000; 122: 9336
- 9c Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2003; 125: 16
- 9d Bahmanyar S, Houk KN, Martin HJ, List B. J. Am. Chem. Soc. 2003; 125: 2475
- 9e Vignola N, List B. J. Am. Chem. Soc. 2004; 126: 450
- 9f Coric I, List B. Nature 2012; 483: 315
- 10a Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 10b Jen WS, Wiener JJ. M, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 9874
- 10c Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370
- 10d Lambert TH, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 13646
- 10e Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 7894
- 10f Brown SP, Goodwin NC, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 1192
- 11 Jarvo ER, Evans CA, Copeland GT, Miller SJ. J. Org. Chem. 2001; 66: 5522
- 12 Angione MC, Miller SJ. Tetrahedron 2006; 62: 5254
- 13 Zhao Y, Mitra AW, Hoveyda AH, Snapper ML. Angew. Chem. Int. Ed. 2007; 46: 8471
- 14 Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
- 15 Kim JH, Čorić I, Palumbo C, List B. J. Am. Chem. Soc. 2015; 137: 1778
- 16 Yamanaka T, Kondoh A, Terada M. J. Am. Chem. Soc. 2015; 137: 1048
- 17 Yoneda N, Matsumoto A, Asano K, Matsubara S. Chem. Lett. 2016; 45: 1300
- 18 Huang B, He Y, Levin MD, Coelho JA. S, Bergman RG, Toste FD. Adv. Synth. Catal. 2020; 362: 295
- 19 Rajkumar S, He S, Yang X. Angew. Chem. Int. Ed. 2019; 58: 10315
- 20 Rajkumar S, Tang M, Yang X. Angew. Chem. Int. Ed. 2020; 59: 2333
- 21 Pan Y, Jiang Q, Rajkumar S, Zhu C, Xie J, Yu S, Chen Y, He YP, Yang X. Adv. Synth. Catal. 2021; 363: 200
- 22 Tang M, Gu H, He S, Rajkumar S, Yang X. Angew. Chem. Int. Ed. 2021; 60: 21334
- 23 Zhang CH, Gao Q, Li M, Wang JF, Yu CM, Mao B. Org. Lett. 2021; 23: 3949
- 24a Ghosh AK, Anderson DD. Future Med. Chem. 2011; 3: 1181
- 24b Nasir NM, Ermanis K, Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
- 24c Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
- 25 Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
- 26a Lu S, Poh SB, Siau W.-Y, Zhao Y. Angew. Chem. Int. Ed. 2013; 52: 1731
- 26b Lu S, Poh SB, Siau W.-Y, Zhao Y. Synlett 2013; 24: 1165
- 27 Greenhalgh MD, Smith SM, Walden DM, Taylor JE, Brice Z, Robinson ER. T, Fallan C, Cordes DB, Slawin AM. Z, Richardson HC, Grove MA, Cheong PH, Smith AD. Angew. Chem. Int. Ed. 2018; 57: 3200
- 28 Guha NR, Neyyappadath RM, Greenhalgh MD, Chisholm R, Smith SM, McEvoy ML, Young CM, Rodríguez-Escrich C, Pericàs MA, Hähner G, Smith AD. Green Chem. 2018; 20: 4537
- 29 Young CM, Elmi A, Pascoe DJ, Morris RK, McLaughlin C, Woods AM, Frost AB, de la Houpliere A, Ling KB, Smith TK, Slawin AM. Z, Willoughby PH, Cockroft SL, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 3705
- 30a Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
- 30b Bae HY, Hofler D, Kaib PS. J, Kasaplar P, De C. K, Dohring A, Lee S, Kaupmees K, Leito I, List B. Nat. Chem. 2018; 10: 888
- 31 Mandai H, Shiomoto R, Fujii K, Mitsudo K, Suga S. Org. Lett. 2021; 23: 1169
- 32 Qu S, Smith SM, Laina-Martín V, Neyyappadath RM, Greenhalgh MD, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 16572
- 33 Niu S, Zhang H, Xu W, Bagdi PR, Zhang G, Liu J, Yang S, Fang X. Nat. Commun. 2021; 12: 3735
- 34 Desrues T, Liu X, Pons JM, Monnier V, Amalian JA, Charles L, Quintard A, Bressy C. Org. Lett. 2021; 23: 4332
- 35 Pawliczek M, Hashimoto T, Maruoka K. Chem. Sci. 2018; 9: 1231
- 36a Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
- 36b Vargová D, Némethová I, Plevová K, Šebesta R. ACS Catal. 2019; 9: 3104
- 36c Shu T, Cossy J. Chem. Soc. Rev. 2021; 50: 658
- 36d Wen J, Wang F, Zhang X. Chem. Soc. Rev. 2021; 50: 3211
- 36e Wang H, Wen J, Zhang X. Chem. Rev. 2021; 121: 7530
- 37a Tosaki S.-Y, Hara K, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 11776
- 37b Hara K, Tosaki S.-Y, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M. Tetrahedron 2009; 65: 5030
- 38 Shintani R, Takatsu K, Hayashi T. Org. Lett. 2008; 10: 1191
- 39 Mao R, Zhao Y, Zhu X, Wang F, Deng W.-Q, Li X. Org. Lett. 2021; 23: 7038
- 40 Olivares-Romero JL, Li Z, Yamamoto H. J. Am. Chem. Soc. 2013; 135: 3411
- 41 Zhang W, Ma S. Chem. Commun. 2018; 54: 6064
- 42 Wang J, Zhang W, Wu P, Huang C, Zheng Y, Zheng W.-F, Qian H, Ma S. Org. Chem. Front. 2020; 7: 3907
- 43a Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
- 43b Ma S. Acc. Chem. Res. 2003; 36: 701
- 43c Ma S. Chem. Rev. 2005; 105: 2829
- 43d Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
- 43e Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
- 43f Munoz MP. Chem. Soc. Rev. 2014; 43: 3164
- 44 Zheng W.-F, Zhang W, Huang C, Wu P, Qian H, Wang L, Guo Y.-L, Ma S. Nat. Catal. 2019; 2: 997
- 45 Hua Y, Liu Z.-S, Xie PP, Ding B, Cheng H.-G, Hong X, Zhou Q. Angew. Chem. Int. Ed. 2021; 60: 12824
- 46 Seliger J, Dong X, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 1970
- 47 Liao K, Gong Y, Zhu RY, Wang C, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2021; 60: 8488
- 48 Xie S, Gao X, Zhou F, Wu H, Zhou J. Chin. Chem. Lett. 2020; 31: 324
For recent reviews, see:
For selected examples, see:
For selected examples, see:
For a review, see:
For a recent example of low organocatalyst loading, see:
For recent reviews, see:
For selected reviews, see: