Rofo 2022; 194(05): 491-504
DOI: 10.1055/a-1718-4355
Review

Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods

Kardiale Magnetresonanztomografie mit Late-Gadolinium-Enhancement: Vom Grundprinzip zu neuen Methoden
1   Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
2   Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
3   School of Biomedical Engineering & Imaging Sciences, King’s College London, United Kingdom
,
Tilman Emrich
4   Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
5   German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
6   Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
,
René M. Botnar
3   School of Biomedical Engineering & Imaging Sciences, King’s College London, United Kingdom
7   Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
,
M. Eline Kooi
1   Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
2   Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
,
Joachim E. Wildberger
1   Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
2   Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
,
K.-F. Kreitner
4   Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
› Author Affiliations

Abstract

Background Late gadolinium enhancement (LGE) is a widely used cardiac magnetic resonance imaging (MRI) technique to diagnose a broad range of ischemic and non-ischemic cardiomyopathies. Since its development and validation against histology already more than two decades ago, the clinical utility of LGE and its span of applications have increased considerably.

Methods In this review we will present the basic concepts of LGE imaging and its diagnostic and prognostic value, elaborate on recent developments and emerging methods, and finally discuss future prospects.

Results Continuous developments in 3 D imaging methods, motion correction techniques, water/fat-separated imaging, dark-blood methods, and scar quantification improved the performance and further expanded the clinical utility of LGE imaging.

Conclusion LGE imaging is the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened its position.

Key Points:

  • LGE MRI is the reference standard for the noninvasive assessment of myocardial viability

  • LGE MRI is used to diagnose a broad range of non-ischemic cardiomyopathies in everyday clinical practice.

  • Improvements in spatial resolution and scar-to-blood contrast further strengthened its position

  • Continuous developments improve its performance and further expand its clinical utility

Citation Format

  • Holtackers RJ, Emrich T, Botnar RM et al. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. Fortschr Röntgenstr 2022; 194: 491 – 504

Zusammenfassung

Hintergrund Das Late-Gadolinium-Enhancement (LGE) ist eine weit verbreitete Methode in der kardialen Magnetresonanztomografie (MRT) um ein breites Spektrum an ischämischen und nicht-ischämischen Kardiomyopathien zu diagnostizieren. Die klinische Anwendung und Nutzen haben sich seit der Entwicklung und histologischen Validierung des LGE vor mehr als zwei Jahrzehnten erheblich gesteigert.

Methoden In dieser Übersichtsarbeit wird das Grundprinzip der LGE-Bildgebung und der diagnostische und prognostische Wert vorgestellt, aktuelle Entwicklungen und neue Methoden erläutert und Zukunftsperspektiven diskutiert.

Ergebnisse Kontinuierliche Weiterentwicklungen bei 3D-Bildgebungsmethoden, Bewegungskorrekturtechniken, wasser-/ fettgetrennter Bildgebung, Dark-Blood-Methoden und Narbenquantifizierung haben die Leistung und den klinischen Nutzen der LGE-Bildgebung weiter verbessert.

Schlussfolgerung Die LGE-Bildgebung ist der aktuelle nichtinvasive Referenzstandard für die Beurteilung der Myokardvitalität. Verbesserungen bei der räumlichen Auflösung, dem Narben-Blut-Kontrast und der wasser-/fettgetrennten Bildgebung haben diese Position weiter gestärkt.

Kernaussagen:

  • LGE-MRT ist der Referenzstandard für die nichtinvasive Beurteilung der Myokardvitalität.

  • Das LGE wird in der täglichen klinischen Praxis zur Diagnose eines breiten Spektrums nicht-ischämischer Kardiomyopathien eingesetzt.

  • Verbesserungen der räumlichen Auflösung und des Narben- Blut-Kontrastes haben diese Position weiter gestärkt.

  • Kontinuierliche Weiterentwicklungen verbessern die Leistung und erweitern den klinischen Nutzen.



Publication History

Received: 14 October 2021

Accepted: 21 November 2021

Article published online:
23 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kramer CM, Barkhausen J, Bucciarelli-Ducci C. et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 2020; 22: 17
  • 2 Kim RJ, Fieno DS, Parrish TB. et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999; 100: 1992-2002
  • 3 Simonetti OP, Kim RJ, Fieno DS. et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001; 218: 215-223
  • 4 Neilan TG, Coelho-Filho OR, Danik SB. et al. CMR quantification of myocardial scar provides additive prognostic information in nonischemic cardiomyopathy. JACC Cardiovasc Imaging 2013; 6: 944-954
  • 5 Bojer AS, Sorensen MH, Vejlstrup N. et al. Distinct non-ischemic myocardial late gadolinium enhancement lesions in patients with type 2 diabetes. Cardiovasc Diabetol 2020; 19: 184
  • 6 Oakes RS, Badger TJ, Kholmovski EG. et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 2009; 119: 1758-1567
  • 7 Marrouche NF, Wilber D, Hindricks G. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The decaaf study. JAMA 2014; 311: 498-506
  • 8 Dickfeld T, Kato R, Zviman M. et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol 2006; 47: 370-378
  • 9 Akoum N, Wilber D, Hindricks G. et al. MRI assessment of ablation-induced scarring in atrial fibrillation: Analysis from the decaaf study. J Cardiovasc Electrophysiol 2015; 26: 473-480
  • 10 Fochler F, Yamaguchi T, Kheirkahan M. et al. Late gadolinium enhancement magnetic resonance imaging guided treatment of post-atrial fibrillation ablation recurrent arrhythmia. Circ Arrhythm Electrophysiol 2019; 12: e007174
  • 11 Kirstein B, Morris A, Baher A. et al. Magnetic resonance imaging-guided cryoballoon ablation for left atrial substrate modification in patients with atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31: 1587-1594
  • 12 Mahrholdt H, Wagner A, Judd RM. et al. Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J 2002; 23: 602-619
  • 13 Kellman P, Arai AE. Cardiac imaging techniques for physicians: Late enhancement. J Magn Reson Imaging 2012; 36: 529-542
  • 14 Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250-251
  • 15 Kim RJ, Shah DJ, Judd RM. How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 2003; 5: 505-514
  • 16 Kellman P, Arai AE, McVeigh ER. et al. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002; 47: 372-383
  • 17 Saranathan M, Rochitte CE, Foo TK. Fast, three-dimensional free-breathing MR imaging of myocardial infarction: A feasibility study. Magn Reson Med 2004; 51: 1055-1060
  • 18 Spuentrup E, Buecker A, Karassimos E. et al. Navigator-gated and real-time motion corrected free-breathing MR imaging of myocardial late enhancement. Rofo 2002; 174: 562-567
  • 19 Keegan J, Drivas P, Firmin DN. Navigator artifact reduction in three-dimensional late gadolinium enhancement imaging of the atria. Magn Reson Med 2014; 72: 779-785
  • 20 Hu C, Huber S, Latif SR. et al. Repairit: Improving myocardial nulling and ghosting artifacts of 3D navigator-gated late gadolinium enhancement imaging during arrhythmia. J Magn Reson Imaging 2019; 49: 688-699
  • 21 Holtackers RJ, Gommers S, Van De Heyning CM. et al. Steadily increasing inversion time improves blood suppression for free-breathing 3D late gadolinium enhancement MRI with optimized dark-blood contrast. Invest Radiol 2021; 56: 335-340
  • 22 Foo TK, Stanley DW, Castillo E. et al. Myocardial viability: Breath-hold 3D MR imaging of delayed hyperenhancement with variable sampling in time. Radiology 2004; 230: 845-851
  • 23 Dewey M, Laule M, Taupitz M. et al. Myocardial viability: Assessment with three-dimensional MR imaging in pigs and patients. Radiology 2006; 239: 703-709
  • 24 Reeder SB, Hargreaves BA, Yu H. et al. Homodyne reconstruction and ideal water-fat decomposition. Magn Reson Med 2005; 54: 586-593
  • 25 Hernando D, Kellman P, Haldar JP. et al. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 2010; 63: 79-90
  • 26 Rutz T, Piccini D, Coppo S. et al. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach. Int J Cardiovasc Imaging 2016; 32: 1735-1744
  • 27 Bratis K, Henningsson M, Grigoratos C. et al. Clinical evaluation of three-dimensional late enhancement MRI. J Magn Reson Imaging 2017; 45: 1675-1683
  • 28 Munoz C, Bustin A, Neji R. et al. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2020; 22: 53
  • 29 Munoz C, Sim I, Neji R. et al. Evaluation of accelerated motion-compensated 3D water/fat late gadolinium enhanced MR for atrial wall imaging. MAGMA 2021; 34: 877-887
  • 30 Fahmy AS, Neisius U, Tsao CW. et al. Gray blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of myocardial scar. J Cardiovasc Magn Reson 2018; 20: 22
  • 31 Basha TA, Tang MC, Tsao C. et al. Improved dark blood late gadolinium enhancement (DB-LGE) imaging using an optimized joint inversion preparation and T2 magnetization preparation. Magn Reson Med 2018; 79: 351-360
  • 32 Kellman P, Xue H, Olivieri LJ. et al. Dark blood late enhancement imaging. J Cardiovasc Magn Reson 2016; 18: 77
  • 33 Liu CY, Wieben O, Brittain JH. et al. Improved delayed enhanced myocardial imaging with T2-prep inversion recovery magnetization preparation. J Magn Reson Imaging 2008; 28: 1280-1286
  • 34 Kim HW, Rehwald WG, Jenista ER. et al. Dark-blood delayed enhancement cardiac magnetic resonance of myocardial infarction. JACC Cardiovasc Imaging 2018; 11: 1758-1769
  • 35 Muscogiuri G, Rehwald WG, Schoepf UJ. et al. T(rho) and magnetization transfer and inversion recovery (TRAMINER)-prepared imaging: A novel contrast-enhanced flow-independent dark-blood technique for the evaluation of myocardial late gadolinium enhancement in patients with myocardial infarction. J Magn Reson Imaging 2017; 45: 1429-1437
  • 36 Farrelly C, Rehwald W, Salerno M. et al. Improved detection of subendocardial hyperenhancement in myocardial infarction using dark blood-pool delayed enhancement MRI. Am J Roentgenol 2011; 196: 339-348
  • 37 Peel SA, Morton G, Chiribiri A. et al. Dual inversion-recovery MR imaging sequence for reduced blood signal on late gadolinium-enhanced images of myocardial scar. Radiology 2012; 264: 242-249
  • 38 Holtackers RJ, Chiribiri A, Schneider T. et al. Dark-blood late gadolinium enhancement without additional magnetization preparation. J Cardiovasc Magn Reson 2017; 19: 64
  • 39 Holtackers RJ, Van De Heyning CM, Nazir MS. et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J Cardiovasc Magn Reson 2019; 21: 44
  • 40 Mastrodicasa D, Elgavish GA, Schoepf UJ. et al. Nonbinary quantification technique accounting for myocardial infarct heterogeneity: Feasibility of applying percent infarct mapping in patients. J Magn Reson Imaging 2018;
  • 41 Varga-Szemes A, van der Geest RJ, Schoepf UJ. et al. MRI post-processing methods for myocardial infarct quantification. Curr Radiol Rep 2016; 4: 30
  • 42 Flett AS, Hasleton J, Cook C. et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 2011; 4: 150-156
  • 43 McCrohon JA, Moon JC, Prasad SK. et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003; 108: 54-59
  • 44 Assomull RG, Prasad SK, Lyne J. et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006; 48: 1977-1985
  • 45 Mrsic Z, Mousavi N, Hulten E. et al. The prognostic value of late gadolinium enhancement in nonischemic heart disease. Magn Reson Imaging Clin N Am 2019; 27: 545-561
  • 46 Ferreira VM, Schulz-Menger J, Holmvang G. et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. J Am Coll Cardiol 2018; 72: 3158-3176
  • 47 Mahrholdt H, Wagner A, Deluigi CC. et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 2006; 114: 1581-1590
  • 48 Maceira AM, Joshi J, Prasad SK. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193
  • 49 Vogelsberg H, Mahrholdt H, Deluigi CC. et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: Noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 2008; 51: 1022-1030
  • 50 Papanastasiou CA, Kokkinidis DG, Kampaktsis PN. et al. The prognostic role of late gadolinium enhancement in aortic stenosis: A systematic review and meta-analysis. JACC Cardiovasc Imaging 2020; 13: 385-392
  • 51 Barone-Rochette G, Pierard S, De Meester de Ravenstein C. et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 2014; 64: 144-154
  • 52 Lima JA, Judd RM, Bazille A. et al. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995; 92: 1117-1125
  • 53 Roberts WC, Siegel RJ, McManus BM. Idiopathic dilated cardiomyopathy: Analysis of 152 necropsy patients. Am J Cardiol 1987; 60: 1340-1355
  • 54 Moon JC, Reed E, Sheppard MN. et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004; 43: 2260-2264
  • 55 Flett AS, Hayward MP, Ashworth MT. et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation 2010; 122: 138-144
  • 56 Miller CA, Naish JH, Bishop P. et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013; 6: 373-383
  • 57 Holtackers RJ, Gommers S, Heckman LIB. et al. Histopathological validation of dark-blood late gadolinium enhancement MRI without additional magnetization preparation. J Magn Reson Imaging 2022; 55: 190-197
  • 58 Wagner A, Mahrholdt H, Holly TA. et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: An imaging study. Lancet 2003; 361: 374-379
  • 59 Karamitsos TD, Dall'Armellina E, Choudhury RP. et al. Ischemic heart disease: Comprehensive evaluation by cardiovascular magnetic resonance. Am Heart J 2011; 162: 16-30
  • 60 Ibrahim T, Bulow HP, Hackl T. et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol 2007; 49: 208-216
  • 61 Lee SA, Yoon YE, Kim JE. et al. Long-term prognostic value of late gadolinium-enhanced magnetic resonance imaging in patients with and without left ventricular dysfunction undergoing coronary artery bypass grafting. Am J Cardiol 2016; 118: 1647-1654
  • 62 Kim RJ, Wu E, Rafael A. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445-1453
  • 63 Selvanayagam JB, Kardos A, Francis JM. et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 2004; 110: 1535-1541
  • 64 Beek AM, Kuhl HP, Bondarenko O. et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003; 42: 895-901
  • 65 Stone GW, Selker HP, Thiele H. et al. Relationship between infarct size and outcomes following primary PCI: Patient-level analysis from 10 randomized trials. J Am Coll Cardiol 2016; 67: 1674-1683
  • 66 Gerber BL, Rochitte CE, Melin JA. et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 2000; 101: 2734-2741
  • 67 Pontone G, Guaricci AI, Andreini D. et al. Prognostic stratification of patients with ST-segment-elevation myocardial infarction (PROSPECT): A cardiac magnetic resonance study. Circ Cardiovasc Imaging 2017; 10: e006428
  • 68 Eitel I, de Waha S, Wohrle J. et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014; 64: 1217-1226
  • 69 Orn S, Manhenke C, Greve OJ. et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 2009; 30: 1978-1985
  • 70 Roes SD, Kelle S, Kaandorp TA. et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 2007; 100: 930-936
  • 71 Kelle S, Roes SD, Klein C. et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 2009; 54: 1770-1777
  • 72 Kuruvilla S, Adenaw N, Katwal AB. et al. Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: A systematic review and meta-analysis. Circ Cardiovasc Imaging 2014; 7: 250-258
  • 73 Abbasi SA, Ertel A, Shah RV. et al. Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson 2013; 15: 89
  • 74 Gulati A, Jabbour A, Ismail TF. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896-908
  • 75 Lehrke S, Lossnitzer D, Schob M. et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: Prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 2011; 97: 727-732
  • 76 Klem I, Weinsaft JW, Bahnson TD. et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol 2012; 60: 408-420
  • 77 Alba AC, Gaztanaga J, Foroutan F. et al. Prognostic value of late gadolinium enhancement for the prediction of cardiovascular outcomes in dilated cardiomyopathy: An international, multi-institutional study of the minicor group. Circ Cardiovasc Imaging 2020; 13: e010105
  • 78 Iles L, Pfluger H, Lefkovits L. et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol 2011; 57: 821-828
  • 79 Grun S, Schumm J, Greulich S. et al. Long-term follow-up of biopsy-proven viral myocarditis: Predictors of mortality and incomplete recovery. J Am Coll Cardiol 2012; 59: 1604-1615
  • 80 Grani C, Eichhorn C, Biere L. et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol 2017; 70: 1964-1976
  • 81 Mewton N, Dernis A, Bresson D. et al. Myocardial biomarkers and delayed enhanced cardiac magnetic resonance relationship in clinically suspected myocarditis and insight on clinical outcome. J Cardiovasc Med (Hagerstown) 2015; 16: 696-703
  • 82 Filippetti L, Mandry D, Venner C. et al. Long-term outcome of patients with low/intermediate risk myocarditis is related to the presence of left ventricular remodeling in addition to the MRI pattern of delayed gadolinium enhancement. JACC Cardiovasc Imaging 2018; 11: 1367-1369
  • 83 Bruder O, Wagner A, Jensen CJ. et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 875-887
  • 84 Weng Z, Yao J, Chan RH. et al. Prognostic value of LGE-CMR in HCM: A meta-analysis. JACC Cardiovasc Imaging 2016; 9: 1392-1402
  • 85 Chan RH, Maron BJ, Olivotto I. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014; 130: 484-495
  • 86 Ruberg FL, Appelbaum E, Davidoff R. et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 2009; 103: 544-549
  • 87 Mekinian A, Lions C, Leleu X. et al. Prognosis assessment of cardiac involvement in systemic al amyloidosis by magnetic resonance imaging. Am J Med 2010; 123: 864-868
  • 88 Austin BA, Tang WH, Rodriguez ER. et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2009; 2: 1369-1377
  • 89 Fontana M, Pica S, Reant P. et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132: 1570-1579
  • 90 White JA, Kim HW, Shah D. et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 7: 143-156
  • 91 Benjamin EJ, Virani SS, Callaway CW. et al. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation 2018; 137: e67-e492
  • 92 Dweck MR, Joshi S, Murigu T. et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 2011; 58: 1271-1279
  • 93 Quarto C, Dweck MR, Murigu T. et al. Late gadolinium enhancement as a potential marker of increased perioperative risk in aortic valve replacement. Interact Cardiovasc Thorac Surg 2012; 15: 45-50
  • 94 Weidemann F, Herrmann S, Stork S. et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009; 120: 577-584
  • 95 Dang Y, Hou Y. The prognostic value of late gadolinium enhancement in heart diseases: An umbrella review of meta-analyses of observational studies. Eur Radiol 2021; 31: 4528-4537
  • 96 Wesbey GE, Higgins CB, McNamara MT. et al. Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 1984; 153: 165-169
  • 97 Nishimura T, Yamada Y, Hayashi M. et al. Determination of infarct size of acute myocardial infarction in dogs by magnetic resonance imaging and gadolinium-DTPA: Comparison with indium-111 antimyosin imaging. Am J Physiol Imaging 1989; 4: 83-88
  • 98 Judd RM, Lugo-Olivieri CH, Arai M. et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995; 92: 1902-1910
  • 99 Wu KC, Zerhouni EA, Judd RM. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765-772
  • 100 de Roos A, van Rossum AC, van der Wall E. et al. Reperfused and nonreperfused myocardial infarction: Diagnostic potential of Gd-DTPA – enhanced MR imaging. Radiology 1989; 172: 717-720
  • 101 McNamara MT, Tscholakoff D, Revel D. et al. Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 1986; 158: 765-769
  • 102 Holtackers RJ, Wildberger JE, Wintersperger BJ. et al. Impact of field strength in clinical cardiac magnetic resonance imaging. Invest Radiol 2021; 56: 764-772
  • 103 Moon JC, Messroghli DR, Kellman P. et al. Myocardial T1 mapping and extracellular volume quantification: A society for cardiovascular magnetic resonance (SCMR) and CMR working group of the european society of cardiology consensus statement. J Cardiovasc Magn Reson 2013; 15: 92
  • 104 Ugander M, Bagi PS, Oki AJ. et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 2012; 5: 596-603
  • 105 Do DH, Eyvazian V, Bayoneta AJ. et al. Cardiac magnetic resonance imaging using wideband sequences in patients with nonconditional cardiac implanted electronic devices. Heart Rhythm 2018; 15: 218-225
  • 106 Ranjan R, McGann CJ, Jeong EK. et al. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: A feasibility study at 3 T. Europace 2015; 17: 483-488
  • 107 Bustin A, Fuin N, Botnar RM. et al. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med 2020; 7: 17
  • 108 Holtackers RJ, Van De Heyning CM, Chiribiri AM. et al. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques. J Cardiovasc Magn Reson 2021; 23: 96