Subscribe to RSS
DOI: 10.1055/a-1719-7121
Das schöne, glatte Bein: Haarentfernung durch Laser und lichtbasierte Verfahren
Light-based Hair Removal Technologies for Beautiful LegsZusammenfassung
Die Fotoepilation zählt zu den meistgefragten nichtchirurgischen Eingriffen in der ästhetischen Dermatologie. Haarlose, glatte Beine gelten dabei als Schönheitsideal.
Fotoepilation mittels Laser oder hochenergetischer Blitzlampen (sog. Intensed-Pulsed-Light-Geräte) stellt ein sicheres und effektives Verfahren dar. Der Wirkmechanismus beruht auf dem Prinzip der selektiven Fotothermolyse, wobei eine gezielte thermische Schädigung pigmentierter Haarfollikel unter Schonung des umliegenden Gewebes erfolgt. Melaninpigment des Haarschaftes absorbiert als Zielchromophor Licht eines speziellen Wellenlängenspektrums und führt durch Wärmediffusion zur Schädigung der für das Haarwachstum wichtigen Stammzellen im äußeren Haarwurzelschaft.
Patienten müssen über die Notwendigkeit wiederholter Behandlungen sowie den häufig nur partiellen und temporären Haarverlust aufgeklärt werden. Dunkle Terminalhaare bei hellen Hauttypen lassen sich effektiv entfernen. Bei dunklen Hauttypen besteht aufgrund des erhöhten epidermalen Melaninvorkommens ein erhöhtes Risiko für Nebenwirkungen wie Verbrennungen, Dyspigmentierungen und Narben. Sehr feine, helle oder rote Haare lassen sich kaum mit konventionellen Fotoepilationsverfahren entfernen. Haarentfernungsgeräte für den Heimgebrauch sind eine kostengünstige, einfach anzuwendende Alternative, weisen aber im Vergleich zur professionellen Fotoepilation eine geringere Effektivität auf.
Abstract
Light-based hair removal is one of the most frequently requested, non-invasive procedures in cosmetic dermatology, especially on the legs. Laser and intense pulsed light devices (IPL) allow for effective and safe hair removal. The mechanism of action is based on selective photothermolysis, causing selective thermal damage of pigmented hair follicles while sparing surrounding tissue. Melanin pigment in the hair shaft and matrix region serves as target chromophore and absorbs light of a specific wavelength spectrum, which is then converted to heat. Heat diffusion along the hair shaft causes damage to non-pigmented stem cells of the bulge region and thereby delays hair growth.
Patients require multiple treatments and hair removal is generally incomplete and only temporary. Dark terminal hair on light skin types can be removed very effectively by light-based hair removal methods. Complications such as burns, dyspigmentation and scaring are more frequent in darker skin types due to higher epidermal melanin concentrations. Very fine, light or red hair show low removal rates even with state-of-the-art methods. Home-use of light-based devices pose a convenient, less expensive and easy to use alternative for hair removal. Efficacy, however, is lower compared to professional hair removal procedures.
Publication History
Article published online:
22 February 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Blume-Peytavi U, Hahn S. Medical treatment of hirsutism. Dermatol Ther 2008; 21: 329-339
- 2 Kautz G, Rick K, Sandhofer M. Hrsg. Photoepilation: Zur Praxis der Haarentfernung mit Licht- und Lasersystemen. Darmstadt: Steinkopff; 2004
- 3 Ross EV, Ladin Z, Kreindel M. et al. Theoretical considerations in laser hair removal. Dermatol Clin 1999; 17: 333-355
- 4 Rogachefsky AS, Silapunt S, Goldberg DJ. Evaluation of a new superlong-pulsed 810-nm diode laser for the removal of unwanted hair: the concept of thermal damage time. Dermatol Surg 2002; 28: 410-414
- 5 Gan SD, Graber EM. Laser hair removal: a review. Dermatol Surg 2013; 39: 823-838
- 6 Goldberg DJ. Laser hair removal. In: Laser Dermatology. Pearls and problems. Oxford: Blackwell Publishing; 2007
- 7 Lin TY, Manuskiatti W, Dierickx CC. et al. Hair growth cycle affects hair follicle destruction by ruby laser pulses. J Invest Dermatol 1998; 111: 107-113
- 8 Wanner M. Laser hair removal. Dermatol Ther 2005; 18: 209-216
- 9 Lou WW, Quintana AT, Geronemus RG. et al. Prospective study of hair reduction by diode laser (800 nm) with long-term follow-up. Dermatol Surg 2000; 26: 428-432
- 10 Zerbinati N, Protasoni M, Dalla Gasperina D. et al. Efficacy and safety of triple wavelength laser hair reduction in skin types IV to V. Dermatol Ther 2021; 34: e14599
- 11 Raj Kirit EP, Sivuni A, Ponugupati S. et al. Efficacy and safety of triple wavelength laser hair reduction in skin types IV to V. J Cosmet Dermatol 2021; 20: 1117-1123
- 12 Haedersdal M, Beerwerth F, Nash JF. Laser and intense pulsed light hair removal technologies: from professional to home use. Br J Dermatol 2011; 165 (Suppl. 3): 31-36
- 13 Toosi P, Sadighha A, Sharifian A. et al. A comparison study of the efficacy and side effects of different light sources in hair removal. Lasers Med Sci 2006; 21: 1-4
- 14 Lorenz S, Brunnberg S, Landthaler M. et al. Hair removal with the long pulsed Nd:YAG laser: a prospective study with one year follow-up. Lasers Surg Med 2002; 30: 127-134
- 15 Davoudi SM, Behnia F, Gorouhi F. et al. Comparison of long-pulsed alexandrite and Nd:YAG lasers, individually and in combination, for leg hair reduction: an assessor-blinded, randomized trial with 18 months followup. Arch Dermatol 2008; 144: 1323-1327
- 16 Eremia S, Li C, Newman N. Laser hair removal with alexandrite versus diode laser using four treatment sessions: 1-year results. Dermatol Surg 2001; 27: 925-930
- 17 Bouzari N, Tabatabai H, Abbasi Z. et al. Laser hair removal: comparison of long-pulsed Nd:YAG, long-pulsed alexandrite, and long-pulsed diode lasers. Dermatol Surg 2004; 30: 498-502
- 18 Handrick C, Alster TS. Comparison of long-pulsed diode and long-pulsed alexandrite lasers for hair removal: a longterm clinical and histologic study. Dermatol Surg 2001; 27: 622-626
- 19 Dierickx CC, Grossman MC, Farinelli WA. et al. Comparison between a long pulsed ruby laser and a pulsed infrared laser system for hair removal. Lasers Surg Med 1998; (Suppl. 10): 42
- 20 Alster TS. Prolonged clinical experience with laser assisted hair removal: a clinical comparison of systems. Lasers Surg Med 1999; (Suppl. 11): 14-15
- 21 Nanni CA, Alster TS. Efficacy of multiple hair removal sessions using the QS Nd:YAG, long-pulsed ruby, and longpulsed alexandrite laser systems. Lasers Surg Med 1998; (Suppl. 10): 40
- 22 Khatri KA. The safety of long-pulsed nd:yag laser hair removal in skin types iii-v patients during concomitant isotretinoin therapy. J Cosmet Laser Ther 2009; 11: 56-60
- 23 Khatri KA, Garcia V. Light-assisted hair removal in patients undergoing isotretinoin therapy. Dermatol Surg 2006; 32: 875-877
- 24 Nanni CA, Alster TS. Laser-assisted hair removal: side effects of q-switched nd:yag, long-pulsed ruby, and alexandrite lasers. J Am Acad Dermatol 1999; 41: 165-171
- 25 Moreno-Arias GA, Camps-Fresneda A. Long-lasting hypopigmentation induced by long-pulsed alexandrite laser photo-epilation. Dermatol Surg 2003; 29: 420-422
- 26 Alster TS, Khoury RR. Treatment of laser complications. Facial Plast Surg 2009; 25: 316-323
- 27 Rasheed AI. Uncommonly reported side effects of hair removal by long pulsed-alexandrite laser. J Cosmet Dermatol 2009; 8: 267-274
- 28 Alajlan A, Shapiro J, Rivers JK. et al. Paradoxical hypertrichosis after laser epilation. J Am Acad Dermatol 2005; 53: 85-88
- 29 Kontoes P, Vlachos S, Konstantinos M. et al. Hair induction after laser-assisted hair removal and its treatment. J Am Acad Dermatol 2006; 54: 64-67
- 30 Radmanesh M. Paradoxical hypertrichosis and terminal hair change after intense pulsed light hair removal therapy. J Dermatolog Treat 2009; 20: 52-54
- 31 Lolis MS, Marmur ES. Paradoxical effects of hair removal systems: a review. J Cosmet Dermatol 2006; 5: 274-276
- 32 Raulin C, Greve B, Hammes S. Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med 2000; 27: 404-410
- 33 Raulin C, Greve B. Aktueller Stand der Photoepilation. Der Hautarzt 2000; 52: 809-817
- 34 Ismail SA. Long-pulsed Nd: YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial. Br J Dermatol 2012; 166: 317-321
- 35 Dorgham NA, Dorgham DA. Lasers for reduction of unwanted hair in skin of colour: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2020; 34: 948-955
- 36 Bouzari N, Tabatabai H, Abbasi Z. et al. Hair removal using an 800-nm diode laser: comparison at different treatment intervals of 45, 60, and 90 days. Int J Dermatol 2005; 44: 50-53
- 37 Lorenz S, Brunnberg S, Landthaler M. et al. Hair removal with the longpulsed Nd: YAG laser: a prospective study with one year follow-up. Lasers Surg Med 2002; 30: 127-134
- 38 Sadick NS, Shaoul J. Hair removal using a combination of conducted radiofrequency and optical energies – an 18-month follow-up. J Cosmet Laser Ther 2004; 6: 21-26
- 39 Sadick NS, Laughlin SA. Effective epilation of white and blond hair using combined radiofrequency and optical energy. J Cosmet Laser Ther 2004; 6: 27-31
- 40 Dierickx CC, Grossman MC. Laser Hair Removal. In: Dover JS, Goldberg DJ. Laser and Lights. Volume 2. Philadelphia: Elsevier Saunders; 2005: 61-76
- 41 Shin H, Yoon JS, Koh W. et al. Nonpigmented hair removal using photodynamic therapy in animal model. Lasers Surg Med 2016; 48: 748-762
- 42 Hession MT, Markova A, Graber EM. A review of hand-held, home-use cosmetic laser and light devices. Dermatol Surg 2015; 41: 307-320
- 43 Kautz G, Rick K, Sandhofer M. Photoepilation: Zur Praxis der Haarentfernung mit Licht- und Lasersystemen. Darmstadt: Steinkopff; 2004