Subscribe to RSS
DOI: 10.1055/a-1730-2540
Copper-Catalyzed Allylation of Amines with Cyclopropyldiphenylsulfonium Trifluoromethanesulfonate
We thank Wuhan University of Technology and the ‘Hundred Talent’ Program of Hubei Province (China) for financial support.

Abstract
Cyclopropyldiphenylsulfonium salt, a famous ylide precursor previously extensively employed in the preparation of cyclic compounds, has been successfully utilized as an efficient allylation reagent in this work. The copper-catalyzed reactions of cyclopropyldiphenylsulfonium trifluoromethanesulfonate with amines in the presence of an appropriate ligand provided the N-allylated products in good yields. Aliphatic/aromatic amines and primary/secondary amines were all converted under mild reaction conditions. This protocol was also applicable to N-functionalization of drug molecules, supplying the corresponding N-allylated compounds in satisfactory yields. The reaction, which showed good functional group tolerance with a wide range of substrates and excellent chemoselectivity, offers an interesting method for the synthesis of N-allyl amines.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1730-2540.
- Supporting Information
Publication History
Received: 05 December 2021
Accepted after revision: 03 January 2022
Accepted Manuscript online:
03 January 2022
Article published online:
24 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tian Z.-Y, Ma Y, Zhang C.-P. Synthesis 2021; in press
- 1b Li Y, Lian C, Hou Z, Wang D, Wang R, Wan C, Zhong W, Zhao R, Wang Y, Li S, Yin F, Li Z. Chem. Commun. 2020; 56: 3741
- 1c Hirayama M. Biocontrol Sci. 2011; 16: 23
- 2a Wu X, Malval J, Wan D, Jin M. Dyes Pigm. 2016; 132: 128
- 2b Kim J.-B, Jang J.-H, Kim H.-W, Woo S.-G. Chem. Lett. 2003; 32: 554
- 2c Lazauskaite R, Stanislovaityte E, Grazulevicius JV. Monatsh. Chem. 2008; 139: 887
- 3a Zhang Q, van der Donk WA, Liu W. Acc. Chem. Res. 2012; 45: 555
- 3b Zhang J, Zheng YG. ACS Chem. Biol. 2016; 11: 583
- 4 Lu L, Li X, Yang Y, Xie W. Chem. Eur. J. 2019; 25: 13458
- 5 Hu Y, Zhao J, Zhang J, Zhu Z, Rao J. ACS Macro Lett. 2021; 10: 990
- 6a Oost R, Neuhaus JD, Merad J, Maulide N. Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. In Modern Ylide Chemistry. Structure and Bonding, Vol. 177. Gessner VK. Springer; Cham: 2017
- 6b Lu L.-Q, Li T.-R, Wang Q, Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
- 6c Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
- 6d Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
- 6e Yanagi T, Nogi K, Yorimitsu H. Tetrahedron Lett. 2018; 59: 2951
- 6f Liu Y, Ling Y, Ge H, Lu L, Shen Q. Chin. J. Chem. 2021; 39: 1667
- 6g Li Q.-Z, Zou W.-L, Jia Z.-Q, Li J.-L. Synthesis 2022; 54: 67
- 6h Wang S.-M, Han J.-B, Zhang C.-P, Qin H.-L, Xiao J.-C. Tetrahedron 2015; 71: 7949
- 7a Wang D, Carlton CG, Tayu M, McDouall JJ. W, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
- 7b Leypold M, D’Angelo KA, Movassaghi M. Org. Lett. 2020; 22: 8802
- 7c Kawashima H, Yanagi T, Wu C.-C, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 4552
- 7d Chen Y, Wen S, Tian Q, Zhang Y, Cheng G. Org. Lett. 2021; 23: 7905
- 7e Hu Q.-L, Liu J.-T, Li J, Ge Y, Song Z, Chan AS. C, Xiong X.-F. Org. Lett. 2021; 23: 8543
- 7f McBride BJ, Garst ME, Hopkins M. J. Org. Chem. 1984; 49: 1824
- 7g Chen C, Wang Z.-J, Lu H, Zhao Y, Shi Z. Nat. Commun. 2021; 12: 4526
- 7h Simkó DC, Elekes P, Pázmándi V, Novák Z. Org. Lett. 2018; 20: 676
- 8a Wang S.-M, Wang X.-Y, Qin H.-L, Zhang C.-P. Chem. Eur. J. 2016; 22: 6542
- 8b Wang X.-Y, Song H.-X, Wang S.-M, Yang J, Qin H.-L, Jiang X, Zhang C.-P. Tetrahedron 2016; 72: 7606
- 8c Wang S.-M, Song H.-X, Wang X.-Y, Liu N, Qin H.-L, Zhang C.-P. Chem. Commun. 2016; 52: 11893
- 8d Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
- 8e Tian Z.-Y, Zhang C.-P. Chem. Commun. 2019; 55: 11936
- 8f Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
- 8g Zhao J.-N, Kayumov M, Wang D.-Y, Zhang A. Org. Lett. 2019; 21: 7303
- 9a Péter Á, Perry GJ. P, Procter DJ. Adv. Synth. Catal. 2020; 362: 2135
- 9b Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
- 9c Kozhushkov SI, Alcarazo M. Eur. J. Inorg. Chem. 2020; 2486
- 9d Berger F, Ritter T. Synlett 2021; in press
- 9e Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
- 9f Meng L, Zeng J, Wan Q. Synlett 2018; 29: 148
- 9g Li P. Synlett 2021; 32: 1275
- 9h Zhang L, Hu M, Peng B. Synlett 2019; 30: 2203
- 10a Bogdanowicz MJ, Trost BM. Org. Synth. 1974; 54: 27
- 10b Trost BM, LaRochelle R, Bogdanowicz MJ. Tetrahedron Lett. 1970; 11: 3449
- 11a Trost BM. Acc. Chem. Res. 1974; 7: 85
- 11b Romero DL, Pearson WH, Ramamoorthy PS. Cyclopropyldiphenylsulfonium Tetrafluoroborate. In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley, Posted April 15, 2001
- 12a Trost BM, Bogdanowicz MJ. J. Am. Chem. Soc. 1972; 94: 4777
- 12b Trost BM, Bogdanowicz MJ. J. Am. Chem. Soc. 1973; 95: 5321
- 12c Bogdanowicz MJ, Ambelang T, Trost BM. Tetrahedron Lett. 1973; 14: 923
- 12d Green MJ, Shue H.-J, McPhail AT, Miller RW. Tetrahedron Lett. 1976; 17: 2677
- 12e Trost BM, Frazee WJ. J. Am. Chem. Soc. 1977; 99: 6124
- 12f Miller DD, Bossart JF, Chelekis K. J. Org. Chem. 1979; 44: 4449
- 12g Krief A, Ronvaux A. Synlett 1998; 491
- 12h Kwon O, Su D.-S, Meng D, Deng W, D’Amico DC, Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 1880
- 12i Puppala M, Murali A, Baskaran S. Chem. Commun. 2012; 48: 5778
- 12j Ma A.-J, Tu Y.-Q, Peng J.-B, Dou Q.-Y, Hou S.-H, Zhang F.-M, Wang S.-H. Org. Lett. 2012; 14: 3604
- 12k McLeod MC, Singh G, Plampin JN. III, Rane D, Wang JL, Day VW, Aubé J. Nat. Chem. 2014; 6: 133
- 13a Trost BM, Bogdanowicz MJ. J. Am. Chem. Soc. 1973; 95: 289
- 13b Trost BM, Kurozumi S. Tetrahedron Lett. 1974; 15: 1929
- 13c Cheney DL, Paquette LA. J. Org. Chem. 1989; 54: 3334
- 14a Trost BM, Bogdanowicz MJ. J. Am. Chem. Soc. 1971; 93: 3773
- 14b Friese JC, Schäfer HJ. Synlett 2002; 814
- 15 An W, Choi SB, Kim N, Kwon NY, Ghosh P, Han SH, Mishra NK, Han S, Hong S, Kim IS. Org. Lett. 2020; 22: 9004
- 16 Ming X.-X, Wu S, Tian Z.-Y, Song J.-W, Zhang C.-P. Org. Lett. 2021; 23: 6795
- 17 Liu H, Yang X, Han Y, Ru Q, He L, Xia J, Lang H. CN 106588731A, 2017
- 18 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals, 5th ed. Butterworth-Heinemann; Oxford: 2003
- 19a Du Z, Yan Y, Fu Y, Wang K. Asian J. Org. Chem. 2016; 5: 812
- 19b Kita Y, Sakaguchi H, Hoshimoto Y, Nakauchi D, Nakahara Y, Carpentier J.-F, Ogoshi S, Mashima K. Chem. Eur. J. 2015; 21: 14571
- 19c Zhang H, Cai Q, Ma D. J. Org. Chem. 2005; 70: 5164
- 19d Kotha S, Shah VR. Eur. J. Org. Chem. 2008; 1054
- 19e Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Angew. Chem. Int. Ed. 2020; 59: 18646
- 19f Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354
- 19g Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
Selected examples:
Selected book and reviews:
Selected examples:
Selected reviews: