Synlett 2022; 33(05): 473-477
DOI: 10.1055/a-1730-9458
letter

Trifluoroacetic Acid Promoted Ring Contraction in 2,3-Di-O-silylated O-Galactopyranosides and Hemiacetals

Polina I. Abronina
,
Nelly N. Malysheva
,
Alexander I. Zinin
,
Maxim Y. Karpenko
,
Natalya G. Kolotyrkina
,
This work was financially supported by the Russian Foundation for Basic Research (20-03-00465-a).


Abstract

A pyranose ring contraction of 2,3-di-O-silylated O-galactopyranosides with retention of aglycone promoted by anhydrous trifluoroacetic acid (TFA) in CH2Cl2 was demonstrated for the first time. In addition, TFA-promoted pyranose ring contraction of 2,3-bis-O-(triisopropylsilyl)-d-galactopyranose with formation of the corresponding anomeric triols in furanose form was successfully performed. A representative series of β-d-galactopyranosides with Me, Bn, allyl, or 3-(trifluoroacetamido)propyl aglycones has been investigated. TBDPS protective groups were found to be more stable than TIPS groups under conditions of TFA-promoted pyranose ring contraction. An easy access to 2,3-di-O-TBDPS-substituted allyl and benzyl galactofuranosides and 2,3-bis-O-(triisopropylsilyl)-β-d-galactofuranose may present an advantage in synthesis of selectively protected monosacharide building blocks, useful for the synthesis of biologically important oligosaccharides.

Supporting Information



Publication History

Received: 11 November 2021

Accepted after revision: 04 January 2022

Accepted Manuscript online:
04 January 2022

Article published online:
28 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 3 Beynon LM, Perry MB, Richards JC. Can. J. Chem. 1991; 69: 218
  • 4 Nagaoka M, Hashimoto S, Shibata H, Kimura I, Kimura K, Sawada H, Yokokura T. Carbohydr. Res. 1996; 281: 285
  • 6 Krylov VB, Argunov DA, Vinnitskiy DZ, Gerbst AG, Ustyuzhanina NE, Dmitrenok AS, Nifantiev NE. Synlett 2016; 27: 1659
  • 7 Abronina PI, Malysheva NN, Litvinenko VV, Zinin AI, Kolotyrkina NG, Kononov LO. Org. Lett. 2018; 20: 6051
  • 8 Abronina PI, Zinin AI, Malysheva NN, Karpenko MY, Kolotyrkina NG, Kononov LO. ChemistrySelect 2021; 6: 6223
  • 9 Kobayashi Y, Shiozaki M, Ando O. J. Org. Chem. 1995; 60: 2570
  • 10 Page PC. B, Chan Y, Liddle J, Elsegood MR. J. Tetrahedron 2014; 70: 7283
  • 11 Typical Procedure for the Preparation of Allyl 2,3-Bis-O-(tert-butyldiphenylsilyl)-β-d-galactofuranoside (22) Allyl 4,6-O-benzylidene-2,3-bis-O-(tert-butyldiphenylsilyl)-β-d-galactopyranoside (20, 85 mg, 0.11 mmol) was treated according to method A . After silica gel chromatography in PE–EtOAc (5 → 10% EtOAc in PE) the inseparable mixture of the corresponding silylated galactopyranoside (21) and galactofuranoside (22) diols (62 mg, 82%) in 3:1 ratio according to NMR data was isolated. Rf = 0.35 (PE–EtOAc, 7:3). The obtained mixture of galactopyranoside and galactofuranoside diols (21 and 22, 61 mg, 0.09 mmol) was treated according to method B . After silica gel chromatography in PE–EtOAc (5 → 10% EtOAc in PE) allyl 2,3-bis-O-(tert-butyldiphenylsilyl)-β-d-galactofuranoside (22, 54 mg, 72% from 20) was isolated. Rf = 0.30 (PE–EtOAc, 7:3). [α]D 26 –20.7 (c 3.39, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.98 (s, 9 H, (CH3)3CSi), 1.00 (s, 9 H, (CH3)3CSi), 1.91 (s, 1 H, HO-6), 2.67 (d, J = 6.1 Hz, 1 H, HO-5), 3.00 (s, 1 H, H-5), 3.31 (dd, J = 11.2, 4.1 Hz, 1 H, H-6a), 3.41 (dd, J = 11.3, 6.5 Hz, 1 H, H-6b), 3.67 (ddt, J = 13.0, 5.9, 1.4 Hz, 1 H, CH2=CHCH 2O), 3.99 (ddt, J = 13.0, 5.0, 1.6 Hz, 1 H, CH2=CHCH 2O), 4.04 (t, J = 2.7 Hz, 1 H, H-4), 4.31 (d, J = 0.9 Hz, 1 H, H-2), 4.37 (dt, J = 2.7, 0.8 Hz, 1 H, H-3), 4.80 (s, 1 H, H-1), 5.09 (dq, J = 10.4, 1.4 Hz, 1 H, CH 2=CHCH2O), 5.16 (dq, J = 17.2, 1.7 Hz, 1 H, CH 2=CHCH2O), 5.74 (dddd, J = 17.3, 10.3, 5.9, 5.0 Hz, 1 H, CH2=CHCH2O), 7.29–7.50 (m, 12 H, 4 × PhSi (H-3, H-4, H-5)), 7.52–7.71 (m, 8 H, 4 × PhSi (H-2, H-6)). 13C NMR (76 MHz, CDCl3): δ = 18.9 ((CH3)3 CSi), 19.2 ((CH3)3 CSi), 26.8 ((CH3)3CSi), 26.8 ((CH3)3CSi), 64.7 (C-6), 67.8 (CH2=CHCH2O), 70.6 (C-5), 80.8 (C-3), 82.5 (C-2), 87.8 (C-4), 107.6 (C-1), 116.6 (CH2=CHCH2O), 127.8 (PhSi (C-3, C-5)), 127.8 (2 × PhSi (C-3, C-5)), 127.8 (PhSi (C-3, C-5)), 129.9 (PhSi (C-4)), 129.9 (PhSi (C-4)), 130.0 (PhSi (C-4)), 130.0 (PhSi (C-4)), 132.2 (PhSi (C-1)), 132.8 (PhSi (C-1)), 133.1 (PhSi (C-1)), 133.5 (PhSi (C-1)), 134.1 (CH2=CHCH2O), 135.8 (PhSi (C-2, C-6)), 135.8 (3 × PhSi (C-2, C-6)). HRMS (ESI): m/z calcd for C41H52O6Si2 + H+: 697.3375 [M + H]+; found: 697.3376; HRMS (ESI): m/z calcd for C41H52O6Si2 + NH4 +: 714.3641 [M + NH4]+; found: 714.3646; HRMS (ESI): m/z calcd for C41H52O6Si2 + K+: 735.2934 [M + K]+; found: 735.2933.
  • 12 Pazynina G, Sablina M, Ovchinnikova T, Tyrtysh T, Tsygankova S, Tuzikov A, Dobrochaeva K, Shilova N, Khasbiullina N, Bovin N. Carbohydr. Res. 2017; 445: 23
  • 13 Korchagina EY, Bovin NV. Soviet J. Bioorg. Chem. 1992; 18: 153
  • 14 Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Stepanova EV, Kononov LO. RSC Adv. 2020; 10: 36836
  • 15 Stepanova EV, Abronina PI, Zinin AI, Chizhov AO, Kononov LO. Carbohydr. Res. 2019; 471: 95