OP-Journal 2022; 38(02): 96-103
DOI: 10.1055/a-1734-9588
Fachwissen

Robotik in der Endoprothetik - Neue OP-Unterstützungssysteme

Robotics in Joint Replacement - New Surgical Support Systems
Carola Hanreich
,
Laura E. Streck
,
Friedrich Boettner

Zusammenfassung

Der Einsatz robotischer Unterstützungssysteme findet seit den 1990er-Jahren zunehmend Anwendung in der Endoprothetik. Durch höhere Präzision und Reproduzierbarkeit sollen Komplikationen reduziert und funktionelle Ergebnisse sowie Standzeiten verbessert werden. Die meisten aktuell verfügbaren Systeme sind bildgeführt und erfordern eine entsprechende präoperative Planung. Bei anderen Systemen erfolgt die Erfassung der Anatomie und die Planung der Prothese erst intraoperativ. In der Knieendoprothetik konnte durch robotische Technik eine verbesserte Gelenkausrichtung erzielt werden. Bei Hüftendoprothesen zeigte sich eine Verringerung von Abweichungen bei der Pfannenpositionierung. Diese Resultate zeigten sich unabhängig von der Erfahrung des Operateurs, sodass besonders Operateure mit geringerer Fallzahl von dem Einsatz robotischer Unterstützungssysteme profitieren könnten. Jedoch steht dem allerdings eine verlängerte Operationszeit gegenüber. Zudem wirft die Technik u.a. Fragen bez. der Kosteneffizienz und des Managements intraoperativer Komplikationen auf. Ob es durch künstliche Intelligenz langfristig tatsächlich möglich sein wird, die Ergebnisse ohnehin bereits sehr erfolgreicher Operationen noch weiter zu verbessern, bleibt abzuwarten. In jedem Fall liegt die Verantwortung für das Gelingen der Operation doch stets beim Operateur.

Abstract

The use of robotic-assisted joint arthroplasty surgeries has increased over the past decades. It promises higher precision and reproducibility. Thereby it aims to reduce complications and improve functional outcomes and implant survival. Most currently available systems are image-guided and correspondingly require preoperative planning, while other systems generate the anatomic data intraoperatively. In total- and uni-compartmental knee arthroplasties, robotic technology has been associated with improved joint alignment. For total hip arthroplasties, a reduction of deviations in cup positioning was demonstrated. Precision of implant position was independent from surgeon’s experience in robotic-assisted joint replacement. Therefore, especially surgeons with low case numbers could benefit from its use. However, robotic-assisted surgery appears to be associated with longer duration of surgery and aspects such as cost-effectiveness, and management of intraoperative complications need to be addressed. In terms of functional outcomes and implant survival, robotic assisted and manually implanted arthroplasties seem equivalent. Therefore, it remains to be seen whether the combination of growing datasets and artificial intelligence will, on the long run, further improve the results of procedures that are already very successful. In any case, the ultimate responsibility for the success of the operation lies with the surgeon.



Publikationsverlauf

Artikel online veröffentlicht:
30. Mai 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lang JE, Mannava S, Floyd AJ. et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br 2011; 93: 1296-1299
  • 2 Pailhé R. Total knee arthroplasty: Latest robotics implantation techniques. Orthop Traumatol Surg Res 2021; 107: 102780
  • 3 Davies BL, Rodriguez y Baena FM, Barrett AR. et al. Robotic control in knee joint replacement surgery. Proc Inst Mech Eng H 2007; 221: 71-80
  • 4 Banerjee S, Cherian JJ, Elmallah RK. et al. Robot-assisted total hip arthroplasty. Expert Rev Med Devices 2016; 13: 47-56
  • 5 Nakamura N, Sugano N, Nishii T. et al. Robot-assisted primary cementless total hip arthroplasty using surface registration techniques: a short-term clinical report. Int J Comput Assist Radiol Surg 2009; 4: 157-162
  • 6 Jacofsky DJ, Allen M. Robotics in Arthroplasty: A Comprehensive Review. J Arthroplasty 2016; 31: 2353-2363
  • 7 Paul HA, Bargar WL, Mittlestadt B. et al. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 1992; (285) 57-66
  • 8 Liow MHL, Chin PL, Pang HN. et al. THINK surgical TSolution-One® (Robodoc) total knee arthroplasty. SICOT J 2017; 3: 63
  • 9 Han S, Rodriguez-Quintana D, Freedhand AM. et al. Contemporary Robotic Systems in Total Knee Arthroplasty: A Review of Accuracy and Outcomes. Orthop Clin North Am 2021; 52: 83-92
  • 10 Kayani B, Konan S, Pietrzak JRT. et al. Iatrogenic Bone and Soft Tissue Trauma in Robotic-Arm Assisted Total Knee Arthroplasty Compared With Conventional Jig-Based Total Knee Arthroplasty: A Prospective Cohort Study and Validation of a New Classification System. J Arthroplasty 2018; 33: 2496-2501
  • 11 Khlopas A, Sodhi N, Sultan AA. et al. Robotic Arm-Assisted Total Knee Arthroplasty. J Arthroplasty 2018; 33: 2002-2006
  • 12 Sultan AA, Piuzzi N, Khlopas A. et al. Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Rev Med Devices 2017; 14: 925-927
  • 13 Hampp EL, Chughtai M, Scholl LY. et al. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J Knee Surg 2019; 32: 239-250
  • 14 Smith + Nephew. NAVIO Technology. https://www.smith-nephew.com/professional/microsites/navio/navio-technology/
  • 15 Smith + Nephew. CORI Surgical System. https://www.smith-nephew.com/professional/products/robotics/cori-surgical-system/
  • 16 Banerjee S, Cherian JJ, Elmallah RK. et al. Robotic-assisted knee arthroplasty. Expert Rev Med Devices 2015; 12: 727-735
  • 17 Abdel MP, Oussedik S, Parratte S. et al. Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Joint J 2014; 96-B: 857-862
  • 18 Delanois RE, Mistry JB, Gwam CU. et al. Current Epidemiology of Revision Total Knee Arthroplasty in the United States. J Arthroplasty 2017; 32: 2663-2668
  • 19 Sharkey PF, Lichstein PM, Shen C. et al. Why are total knee arthroplasties failing today--has anything changed after 10 years?. J Arthroplasty 2014; 29: 1774-1778
  • 20 Cobb J, Henckel J, Gomes P. et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br 2006; 88: 188-197
  • 21 Kim SM, Park YS, Ha CW. et al. Robot-assisted implantation improves the precision of component position in minimally invasive TKA. Orthopedics 2012; 35: e1334-e1339
  • 22 Khlopas A, Chughtai M, Hampp EL. et al. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Soft Tissue Protection. Surg Technol Int 2017; 30: 441-446
  • 23 Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 2007; 22: 1054-1059
  • 24 Siebert W, Mai S, Kober R. et al. Technique and first clinical results of robot-assisted total knee replacement. Knee 2002; 9: 173-180
  • 25 Song EK, Seon JK, Park SJ. et al. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 2011; 19: 1069-1076
  • 26 Karthik K, Colegate-Stone T, Dasgupta P. et al. Robotic surgery in trauma and orthopaedics: a systematic review. Bone Joint J 2015; 97-B: 292-299
  • 27 Kim YH, Yoon SH, Park JW. Does Robotic-assisted TKA Result in Better Outcome Scores or Long-Term Survivorship Than Conventional TKA? A Randomized, Controlled Trial. Clin Orthop Relat Res 2020; 478: 266-275
  • 28 Kort N, Stirling P, Pilot P. et al. Robot-assisted knee arthroplasty improves component positioning and alignment, but results are inconclusive on whether it improves clinical scores or reduces complications and revisions: a systematic overview of meta-analyses. Knee Surg Sports Traumatol Arthrosc 2021;
  • 29 Bautista M, Manrique J, Hozack WJ. Robotics in Total Knee Arthroplasty. J Knee Surg 2019; 32: 600-606
  • 30 Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 2007; 464: 111-116
  • 31 Liow MH, Xia Z, Wong MK. et al. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty 2014; 29: 2373-2377
  • 32 Song EK, Seon JK, Yim JH. et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 2013; 471: 118-126
  • 33 Marchand RC, Sodhi N, Khlopas A. et al. Patient Satisfaction Outcomes after Robotic Arm-Assisted Total Knee Arthroplasty: A Short-Term Evaluation. J Knee Surg 2017; 30: 849-853
  • 34 Griffin FM, Insall JN, Scuderi GR. Accuracy of soft tissue balancing in total knee arthroplasty. J Arthroplasty 2000; 15: 970-973
  • 35 Kim KT, Lee S, Kim TW. et al. The influence of postoperative tibiofemoral alignment on the clinical results of unicompartmental knee arthroplasty. Knee Surg Relat Res 2012; 24: 85-90
  • 36 Plate JF, Mofidi A, Mannava S. et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop 2013; 2013: 837167
  • 37 Karia M, Masjedi M, Andrews B. et al. Robotic assistance enables inexperienced surgeons to perform unicompartmental knee arthroplasties on dry bone models with accuracy superior to conventional methods. Adv Orthop 2013; 2013: 481039
  • 38 Altieri MS, Yang J, Telem DA. et al. Robotic-assisted outcomes are not tied to surgeon volume and experience. Surg Endosc 2016; 30: 2825-2833
  • 39 Crawford DA, Berend KR, Thienpont E. Unicompartmental Knee Arthroplasty: US and Global Perspectives. Orthop Clin North Am 2020; 51: 147-159
  • 40 Kahlenberg CA, Richardson SS, Gruskay JA. et al. Trends in Utilization of Total and Unicompartmental Knee Arthroplasty in the United States. J Knee Surg 2021; 34: 1138-1141
  • 41 Domb BG, El Bitar YF, Sadik AY. et al. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res 2014; 472: 329-336
  • 42 Tsai TY, Dimitriou D, Li JS. et al. Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy?. Int J Med Robot 2016; 12: 288-295
  • 43 Lass R, Kubista B, Olischar B. et al. Total hip arthroplasty using imageless computer-assisted hip navigation: a prospective randomized study. J Arthroplasty 2014; 29: 786-791
  • 44 Lass R, Olischar B, Kubista B. et al. Total Hip Arthroplasty Using Imageless Computer-Assisted Navigation-2-Year Follow-Up of a Prospective Randomized Study. J Clin Med 2020; 9: 1620
  • 45 Schulz AP, Seide K, Queitsch C. et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot 2007; 3: 301-306
  • 46 Honl M, Dierk O, Gauck C. et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 2003; 85: 1470-1478
  • 47 Nishihara S, Sugano N, Nishii T. et al. Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J Arthroplasty 2006; 21: 957-966
  • 48 Nakamura N, Sugano N, Nishii T. et al. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 2010; 468: 1072-1081
  • 49 Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 1998; (354) 82-91
  • 50 Kayani B, Konan S, Huq SS. et al. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 2019; 27: 1132-1141
  • 51 Coon TM. Integrating robotic technology into the operating room. Am J Orthop (Belle Mead NJ) 2009; 38 (Suppl. 02) S7-S9
  • 52 Kayani B, Konan S, Pietrzak JRT. et al. The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 2018; 100-B: 1033-1042
  • 53 Swank ML, Alkire M, Conditt M. et al. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop (Belle Mead NJ) 2009; 38 (Suppl. 02) S32-S36
  • 54 Paul S, McCulloch P, Sedrakyan A. Robotic surgery: revisiting “no innovation without evaluation”. BMJ 2013; 346: f1573
  • 55 Moschetti WE, Konopka JF, Rubash HE. et al. Can Robot-Assisted Unicompartmental Knee Arthroplasty Be Cost-Effective? A Markov Decision Analysis. J Arthroplasty 2016; 31: 759-765
  • 56 Brooks PJ. Dislocation following total hip replacement: causes and cures. Bone Joint J 2013; 95-B(11 Suppl. A): S67-S69
  • 57 Seagrave KG, Troelsen A, Malchau H. et al. Acetabular cup position and risk of dislocation in primary total hip arthroplasty. Acta Orthop 2017; 88: 10-17
  • 58 Abdel MP, von Roth P, Jennings MT. et al. What Safe Zone? The Vast Majority of Dislocated THAs Are Within the Lewinnek Safe Zone for Acetabular Component Position. Clin Orthop Relat Res 2016; 474: 386-391
  • 59 Gaudiani MA, Samuel LT, Kamath AF. et al. Robotic-Assisted versus Manual Unicompartmental Knee Arthroplasty: Contemporary Systematic Review and Meta-analysis of Early Functional Outcomes. J Knee Surg 2021; 34: 1048-1056
  • 60 Savov P, Tuecking LR, Windhagen H. et al. Robotics improves alignment accuracy and reduces early revision rates for UKA in the hands of low-volume UKA surgeons. Arch Orthop Trauma Surg 2021; 141: 2139-2146
  • 61 Abdel MP, Ollivier M, Parratte S. et al. Effect of Postoperative Mechanical Axis Alignment on Survival and Functional Outcomes of Modern Total Knee Arthroplasties with Cement: A Concise Follow-up at 20 Years. J Bone Joint Surg Am 2018; 100: 472-478
  • 62 Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop Relat Res 2007; 463: 31-36