Subscribe to RSS
DOI: 10.1055/a-1738-9941
Effects of B12 Deficiency Anemia on Radial Peripapillary and Macular Vessel Density: An Optical Coherence Tomography Angiography (OCTA) Study
Auswirkungen der B12-Mangelanämie auf die radiale peripapilläre und makuläre Gefäßdichte: eine optische Kohärenztomografiestudie (OCTA-Studie)![](https://www.thieme-connect.de/media/klimo/202301/lookinside/thumbnails/10-1055-a-1738-9941_kl2568-1.jpg)
Abstract
Background To evaluate the macular and optic disc vascular changes in vitamin B12 deficiency anemia.
Methods A total of 24 patients with vitamin B12 deficiency anemia and 24 healthy controls were involved in this study. All participants were evaluated for central macular thickness (CMT), peripapillary retina nerve fiber layer (RNFL) thickness, foveal avascular zone (FAZ) area, macular vessel density (VD) in superficial capillary plexus (SCP) and deep capillary plexus (DCP), choriocapillaris flow area, and optic disc radial peripapillary capillary (RPC) VD using optic coherence tomography (OCT) and optic coherence tomography angiography (OCTA). Metabolic parameters were also noted.
Results Temporal RNFL thickness significantly decreased in the B12 deficiency anemia group (p = 0.04). Choriocapillaris flow area (p = 0.045) and macular vessel density in both SCP (p = 0.022) and DCP (p = 0.018) markedly declined in the study group. Optic disc RPC VD in the B12 deficiency anemia group was lower in all regions compared to that of the control group, but the difference was not statistically significant (p > 0.05). There were significant positive correlations between choriocapillaris flow area, macular VD, vitamin B12, and hemoglobin.
Conclusion Retinal vascular alterations were observed in B12 deficiency anemia, and OCTA may be beneficial in the diagnosis and follow-up of ocular complications in these cases.
Zusammenfassung
Hintergrund Beurteilung der vaskulären Veränderungen der Makula und der Papille bei Vitamin-B12-Mangelanämie.
Methoden In diese Studie wurden insgesamt 24 Patienten mit Vitamin-B12-Mangelanämie und 24 gesunde Kontrollpersonen eingeschlossen. Die zentrale Makuladicke (CMT), die peripapilläre Nervenfaserschicht der Retina (RNFL), der Bereich der fovealen avaskulären Zone (FAZ), die Makulagefäßdichte (VD) im oberflächlichen Kapillarplexus (SCP) und tiefen Kapillarplexus (DCP), die Choriokapillarisflussfläche und Papillen-RPC-VD wurden bei allen Teilnehmern durch optische Kohärenztomografie (OCT) und optische Kohärenztomografieangiografie (OCTA) analysiert. Hierzu wurden auch metabolische Parameter erfasst.
Ergebnisse Die temporale RNFL-Dicke nahm bei der B12-Mangelanämie-Gruppe signifikant ab (p = 0,04). Die Choriokapillarisflussfläche (p = 0,045) und die Makulagefäßdichte sowohl bei SCP (p = 0,022) als auch bei DCP (p = 0,018) nahmen in der Studiengruppe deutlich ab. Die Papillen-RPC-VD bei der B12-Mangelanämie-Gruppe war in allen Regionen niedriger als bei der Kontrollgruppe, jedoch statistisch nicht signifikant (p > 0,05). Es gab signifikante positive Korrelationen zwischen Choriokapillarisflussfläche, Makula-VD und Vitamin B12, Hb.
Schlussfolgerung Bei B12-Mangelanämie sind Gefäßveränderungen in der Retina zu finden. OCTA kann in diesen Fällen zur Diagnose sowie Nachverfolgung der Komplikationen nützlich sein.
Key words
B12 deficiency anemia - macula - optic disc - optical coherence tomography angiography - retina nerve fiber layerSchlüsselwörter
B12-Mangelanämie - Makula - optische Kohärenztomografieangiografie - Papille - Retina-NervenfaserschichtPublication History
Received: 30 November 2021
Accepted: 11 January 2022
Article published online:
23 March 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Stabler SP, Allen RH. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr 2004; 24: 299-326
- 2 Oh R, Brown DL. Vitamin B12 deficiency. Am Fam Physician 2003; 67: 979-986
- 3 Stover PJ. Physiology of folate and vitamin B12 in health and disease. Nutr Rev 2004; 62: 3-12
- 4 Babior BM, Bunn HF. Megaloblastic anemias. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. eds. Harrisonʼs principles of internal medicine. 15th ed. New York: McGraw-Hill; 2001: 674-680
- 5 Akdal G, Yener GG, Ada E. et al. Eye movement disorders in vitamin B12 deficiency: two new cases and a review of the literature. Eur J Neurol 2007; 14: 1170-1172
- 6 Miller A, Korem M, Almog R. et al. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J Neurol Sci 2005; 233: 93-97
- 7 Amemiya T. The eye and nutrition. Jpn J Ophthalmol 2000; 44: 320
- 8 Pasol J. Neuro-ophthalmic disease and optical coherence tomography: glaucoma look-alikes. Curr Opin Ophthalmol 2011; 22: 124-132
- 9 Lu Y, Li Z, Zhang X. et al. Retinal nerve fiber layer structure abnormalities in early Alzheimerʼs disease: evidence in optical coherence tomography. Neurosci Lett 2010; 480: 69-72
- 10 Moschos MM, Tagaris G, Markopoulos I. et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 2011; 21: 24-29
- 11 Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 2008; 29 (2 Suppl.): S126-S131
- 12 Larner AJ. Visual failure caused by vitamin B12 deficiency optic neuropathy. Int J Clin Pract 2004; 58: 977-978
- 13 Chester EM, Agamanolis DP, Harris JW. et al. Optic atrophy in experimental vitamin B12 deficiency in monkeys. Acta Neurol Scand 1980; 61: 9-26
- 14 Carraro MC, Rossetti L, Gerli GC. Prevalence of retinopathy in patients with anemia or thrombocytopenia. Eur J Haematol 2001; 67: 238-244
- 15 Foulds WS. The ocular manifestations of blood diseases. Trans Ophthalmol Soc U K 1963; 83: 345-360
- 16 Chidlow G, Wood JPM, Casson RJ. Investigations into Hypoxia and Oxidative Stress at the Optic Nerve Head in a Rat Model of Glaucoma. Front Neurosci 2017; 11: 478
- 17 Ayyildiz T, Dulkadiroglu R, Yilmaz M. et al. Evaluation of macular, retinal nerve fiber layer and choroidal thickness by optical coherence tomography in children and adolescents with vitamin B12 deficiency. Int Ophthalmol 2021; 41: 2399-2404
- 18 Turkyılmaz K, Oner V, Turkyılmaz AK. et al. Evaluation of peripapillary retinal nerve fiber layer thickness in patients with vitamin B12 deficiency using spectral domain optical coherence tomography. Curr Eye Res 2013; 38: 680-684
- 19 Ozkasap S, Turkyilmaz K, Dereci S. et al. Assessment of peripapillary retinal nerve fiber layer thickness in children with vitamin B12 deficiency. Childs Nerv Syst 2013; 29: 2281-2286
- 20 Gupta DS, Shakeel T, Dhawan A. et al. Effect of vitamin B12 deficiency on peripapillary retinal nerve fiber layer. Int J Ophthalmol 2021; 14 (09) 1424-1429
- 21 Pellegrini F, Prosdocimo G, Papayannis A. et al. Optical coherence tomography angiography findings in deficiency optic neuropathy. Neuroophthalmology 2018; 43: 401-406
- 22 Icel E, Ucak T. The effects of vitamin B12 deficiency on retina and optic disc vascular density. Int Ophthalmol 2021; 41: 3145-3151
- 23 Yang J, Su J, Wang J. et al. Hematocrit dependence of flow signal in optical coherence tomography angiography. Biomed Opt Express 2017; 8: 776-789
- 24 Oliveira C. Toxic-Metabolic and Hereditary Optic Neuropathies. Continuum (Minneap Minn) 2019; 25: 1265-1288
- 25 Sadun AA. Metabolic optic neuropathies. Semin Ophthalmol 2002; 17: 29-32