RSS-Feed abonnieren
DOI: 10.1055/a-1752-0951
Cardiac MRI in Suspected Acute Myocarditis After COVID-19 mRNA Vaccination
Befunde der kardialen MRT bei Patienten mit Verdacht auf eine akute Myokarditis nach COVID-19-mRNA-Impfung Gefördert durch: German Foundation of Heart Research (F/28/20)
Abstract
Purpose To evaluate cardiac MRI characteristics in patients with suspected hypersensitivity myocarditis following mRNA COVID-19 vaccination.
Materials and Methods Patients clinically suspected of acute myocarditis after COVID-19 vaccination were retrospectively analyzed and compared against a healthy control group. Cardiac MRI protocol included parameters such as T1 and T2 relaxation times, extracellular volume (ECV), T2 signal intensity ratio, and late gadolinium enhancement (LGE). Lymph node size was assessed in the patient group on the injection side. Student t-test, analyses of variance (ANOVA) with Tukey post-hoc test, and χ2 test were used for statistical analysis.
Results 20 patients with clinically suspected post-vaccine myocarditis (28 ± 12 years; 12 men) and 40 controls (31 ± 11 years; 25 men) were evaluated. According to the 2018 Lake Louise criteria (LLC), patients with clinically suspected myocarditis were further subdivided into an LLC-positive group (n = 9) and an LLC-negative group (n = 11). The mean time of symptom onset after vaccination was 1.1 ± 1.2 days (LLC-positive) and 6.5 ± 9.2 days (LLC-negative). Group differences in inflammatory variables between myocarditis patients and control subjects were more pronounced in the LLC-positive group (e. g., T1 relaxation time: 1041 ± 61 ms [LLC positive] vs. 1008 ± 79 ms [LLC-negative] vs. 970 ± 25 ms [control]; p <.001; or T2 signal intensity ratio 2.0 ± 0.3 vs. 1.6 ± 0.3 [LLC-negative] and vs. 1.6 ± 0.3 [control], p = .012). LLC-positive patients were significantly faster in receiving an MRI after initial symptom onset (8.8 ± 6.1 days vs. 52.7 ± 33.4 days; p = .001) and had higher troponin T levels (3938 ± 5850 ng/l vs. 9 ± 11 ng/l; p <.001). LGE lesions were predominantly located at the subepicardium of the lateral wall. Axillary lymphadenopathy was more frequent in the LLC-positive group compared to the LLC-negative group (8/9 [89 %] vs. 0/11 [0 %], p < 0.001).
Conclusion Vaccine-induced myocarditis should be considered in patients with acute symptom onset after mRNA vaccination, especially if elevated serum troponin T is observed. Imaging findings of vaccine-induced myocarditis are similar to virus-induced myocarditis, allowing for the use of the Lake Louise Criteria for diagnostic purposes.
Key Points:
-
Vaccine-induced hypersensitivity myocarditis can be confirmed with cardiac MRI
-
Especially patients with sudden onset of symptoms and elevated serum troponin T had positive cardiac MRI findings
-
Cardiac MRI characteristics of vaccine-induced myocarditis are similar to those in virus-induced myocarditis
Citation Format
-
Kravchenko D, Isaak A, Mesropyan N et al. Cardiac MRI in Suspected Acute Myocarditis After COVID-19 mRNA Vaccination. Fortschr Röntgenstr 2022; 194: 1003 – 1011
Zusammenfassung
Ziel Analyse der kardialen MRT-Befunde bei Patienten mit Hypersensitivitätsmyokarditis nach mRNA-COVID-19-Impfung.
Material und Methoden Patienten mit klinischem Verdacht auf akute Myokarditis nach mRNA-COVID-19-Impfung wurden retrospektiv analysiert und mit einer gesunden Kontrollgruppe verglichen. Das Herz-MRT-Protokoll enthielt Parameter wie T1- und T2-Relaxationszeiten, extrazelluläres Volumen (EZV), die T2-Signalintensitätsratio und Late Gadolinium Enhancement (LGE). Die axilläre Lymphknotengröße bei den Patienten wurde auf der Impfseite bestimmt. Für die statistische Analyse wurden der Student-t-Test, Varianzanalysen (ANOVA) mit Tukey-Post-hoc-Test und der χ2-Test verwendet.
Ergebnisse 20 Patienten mit Verdacht auf Myokarditis nach Impfung (28 ± 12 Jahre; 12 Männer) und 40 Kontrollen (31 ± 11 Jahre; 25 Männer) wurden analysiert. Gemäß der 2018er Lake-Louise-Kriterien (LLC) wurden die Patienten in eine LLC-positive Gruppe (n = 9) und eine LLC-negative Gruppe (n = 11) unterteilt. Die mittlere Zeit nach Impfung bis zum Symptombeginn betrug 1,1 ± 1,2 Tage (LLC-positiv) bzw. 6,5 ± 9,2 Tage (LLC-negativ). Die Gruppenunterschiede der Entzündungsparameter zwischen Myokarditispatienten und Kontrollen waren in der LLC-positiven Gruppe ausgeprägter (z. B. T1-Relaxationszeit: 1041 ± 61 ms [LLC-positiv] vs. 1008 ± 79 ms [LLC-negativ] vs. 970 ± 25 ms [Kontrolle], p <,001; oder T2-Signalintensitätsratio 2.0 ± 0.3 vs. 1.6 ± 0.3 [LLC negativ] und vs. 1.6 ± 0.3 [Kontrolle], p = ,012). LLC-positive Patienten erhielten nach Symptombeginn schneller ein MRT (8,8 ± 6,1 Tage vs. 52,7 ± 33,4 Tage; p = ,001) und hatten höhere Troponin T-Werte (3938 ± 5850 ng/l vs. 9 ± 11 ng/l; p <,001). LGE-Läsionen waren überwiegend subepikardial in der Lateralwand lokalisiert. Axilläre Lymphadenopathien waren in der LLC-positiven Gruppe häufiger als in der LLC-negativen Gruppe (8/9 [89 %] vs. 0/11 [0 %] p <,001).
Schlussfolgerung Eine Myokarditis nach mRNA-Impfung sollte bei akutem Auftreten von Symptomen vermutet werden, insbesondere bei erhöhten Troponin-Werten. Die MRT-Befunde einer impfinduzierten Myokarditis sind mit denen einer virusinduzierten Myokarditis vergleichbar, sodass die Lake-Louise-Kriterien zur Diagnosebestätigung angewendet werden können.
Kernaussagen:
-
Hypersensitivitätsmyokarditiden nach stattgehabter mRNA-Impfung können mit der kardialen MRT bestätigt werden
-
Insbesondere Patienten mit plötzlichem Symptombeginn und erhöhtem Troponin T hatten auffällige MRT-Befunde
-
Die MRT-Befunde einer impfungsinduzierten Myokarditis waren vergleichbar mit denen viraler Myokarditiden
Publikationsverlauf
Eingereicht: 15. Oktober 2021
Angenommen: 14. Januar 2022
Artikel online veröffentlicht:
10. März 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kuntz J, Crane B, Weinmann S. et al. Myocarditis and pericarditis are rare following live viral vaccinations in adults. Vaccine 2018; 36 (12) 1524-1527
- 2 Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. Circulation 2021; 144 (06) 471-484
- 3 Kim HW. et al. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol 2021;
- 4 Williams CB, Choi J, Hosseini F. et al. Acute Myocarditis Following mRNA-1273 SARS-CoV-2 Vaccination. CJC open 2021;
- 5 Isaak A, Feisst A, Luetkens JA. Myocarditis Following COVID-19 Vaccination. Radiology 2021; 301 (01) E378-E379
- 6 Barda N. et al. Safety of the BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N Engl J Med 2021; 385 (12) 1078-1090
- 7 Rose NR, Neumann DA, Herskowitz A. Coxsackievirus myocarditis. Advances in internal medicine 1992; 37: 411-429 [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/1558005/
- 8 Ferreira VM. et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. Journal of the American College of Cardiology 2018; 72 (24) 3158-3176
- 9 Brambatti M, Matassini MV, Adler ED. et al. Eosinophilic Myocarditis: Characteristics, Treatment, and Outcomes. Journal of the American College of Cardiology 2017; 70 (19) 2363-2375
- 10 Fenoglio JJ, McAllister HA, Mullick FG. et al. Drug related myocarditis. Human Pathology 1981; 12 (10) 900-907
- 11 Kuchynka P. et al. Current Diagnostic and Therapeutic Aspects of Eosinophilic Myocarditis. BioMed research international 2016; 2016: 2829583
- 12 Sprinkart AM. et al. Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping. J Cardiovasc Magn Reson 2015; 17 (01) 12
- 13 Messroghli DR, Radjenovic A, Kozerke S. et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic resonance in medicine 2004; 52 (01) 141-146
- 14 Look DC, Locker DR. Time Saving in Measurement of NMR and EPR Relaxation Times. Review of Scientific Instruments 1970; 41 (02) 250-251
- 15 Luetkens JA. et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014; 273 (02) 383-392
- 16 Luetkens JA. et al. Comparison of Original and 2018 Lake Louise Criteria for Diagnosis of Acute Myocarditis: Results of a Validation Cohort. Radiology. Cardiothoracic imaging 2019; 1 (03) e190010
- 17 Luetkens JA. et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. European heart journal cardiovascular Imaging 2016; 17 (02) 154-161
- 18 Cerqueira MD. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002; 105 (04) 539-542
- 19 Luetkens JA. et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. European heart journal cardiovascular Imaging 2016; 17 (02) 154-161
- 20 Starekova J, Bluemke DA, Bradham WS. et al. Myocarditis Associated with mRNA COVID-19 Vaccination. Radiology 2021; 211430
- 21 Su JR. et al. Myopericarditis after vaccination, Vaccine Adverse Event Reporting System (VAERS), 1990-2018. Vaccine 2021; 39 (05) 839-845
- 22 Lewin D, dʼAmati G, Lewis W. Hypersensitivity myocarditis: Findings in native and transplanted hearts. Cardiovascular Pathology 1992; 1 (03) 225-229
- 23 Montgomery J. et al. Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol 2021;
- 24 Ammirati E. et al. Temporal relation between second dose BNT162b2 mRNA COVID-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection. IJC Heart & Vasculature 2021; 34: 100774
- 25 Mansour J. et al. Acute myocarditis after a second dose of the mRNA COVID-19 vaccine: a report of two cases. Clinical Imaging 2021; 78: 247-249
- 26 Snapiri O. et al. Transient Cardiac Injury in Adolescents Receiving the BNT162b2 mRNA COVID-19 Vaccine. The Pediatric infectious disease journal 2021; 40 (10) e360-e363
- 27 Chelala L, Jeudy J, Hossain R. et al. Cardiac MRI Findings of Myocarditis After COVID-19 mRNA Vaccination in Adolescents. Am J Roentgenol. American journal of roentgenology 2021;
- 28 Satoh H. et al. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis. World Journal of Cardiology 2014; 6 (07) 585-601
- 29 Robert Koch Institut, Robert Koch-Institut. Impfungen gegen das Coronavirus (COVID-19) in Deutschland nach Hersteller (Stand: 22. September 2021). Chart. 22. September, 2021. [Online]. Available (accessed: Sep. 22 2021): https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.html
- 30 Lauer B. et al. Cardiac Troponin T in Patients With Clinically Suspected Myocarditis. Journal of the American College of Cardiology 1997; 30 (05) 1354-1359
- 31 Smith SC, Ladenson JH, Mason JW. et al Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 1997; 95 (01) 163-168 [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/8994432/
- 32 Lydell CP. et al. Relationship of troponin T to cardiac MRI criteria for acute myocarditis. J Cardiovasc Magn Reson 2011; 13: 1
- 33 Hagen C, Nowack M, Messerli M. et al. Fine needle aspiration in COVID-19 vaccine-associated lymphadenopathy. Swiss Medical Weekly 2021; 151 (29) w20557
- 34 Luetkens JA. et al. Comprehensive Cardiac Magnetic Resonance for Short-Term Follow-Up in Acute Myocarditis. JAHA 2016; 5 (07)