Synthesis 2022; 54(12): 2765-2777
DOI: 10.1055/a-1755-3476
short review

C(sp3)–F Bond Transformation of Perfluoroalkyl Compounds Mediated by Visible-Light Photocatalysis: Spin-Center Shifts and Radical/Polar Crossover Processes via Anionic Intermediates

a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Naoki Sugihara
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Makoto Yasuda
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) (Grant No. JPMJCR20R3), the Ministry of Education, Culture, Sports, Science & Technology, Japan, Grant-in-Aid for Transformative Research Areas (A), Digitalization-driven Transformative Organic Synthesis (Digi-TOS) (Grant No. 21H05212), and the Japan Society for the Promotion of Science (JSPS), KAKENHI (Grant No. JP19K05455.


Abstract

Due to its large bond energy, precisely controllable C–F bond activation is a significant challenge in organic synthesis. A single C(sp3)–F bond transformation of perfluoroalkyl groups is particularly desirable to supply functionalized perfluoroalkyl compounds offering properties that are potentially useful in pharmaceutical and materials chemistry. Recently, the single defluorinative transformation of perfluoroalkyl compounds has been developed via visible-light photocatalysis. Herein, we summarize this field via two main topics. Topic 1 covers the transformations of C(sp3)–F bonds in either perfluoroalkylarenes or perfluoroalkane carbonyl compounds via a defluorinative spin-center shift in the radical anion intermediates. Topic 2 addresses the defluorinative transformations of α-trifluoromethyl alkenes to give gem-difluoroalkenes via a radical/polar crossover process.

1 Introduction

2 C(sp3)–F Transformations via Defluorinative Spin-Center Shifts

3 C(sp3)–F Transformations via a Radical/Polar Crossover Process

4 Conclusions



Publication History

Received: 03 January 2022

Accepted after revision: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
09 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected reviews:
    • 1a Organofluorine Chemistry: Principles and Commercial Applications . Banks RE, Smart BE, Tatlow JC. Plenum Press; New York: 1994
    • 1b Jeschke P. ChemBioChem 2004; 5: 570
    • 1c Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006
    • 1d Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1e Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
    • 1f Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1g Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed. Wiley-VCH; Weinheim: 2013
    • 1h Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 1i Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320

      Selected reviews:
    • 2a Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z. Environ. Sci. Processes Impacts 2020; 22: 2345
    • 2b Borgarello E, Carlini FM. J. Fluorine Chem. 1992; 58: 207

      Selected reviews:
    • 3a Umemoto T. Chem. Rev. 1996; 96: 1757
    • 3b Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 3c Ma J, Cahard D. Chem. Rev. 2004; 104: 6119
    • 3d Barata-Vallejo S, Bonesi SM, Postigo A. RSC Adv. 2015; 5: 62498
    • 3e Barata-Vallejo S, Bonesi SM, Postigo A. Org. Biomol. Chem. 2015; 13: 11153
    • 3f Barata-Vallejo S, Cooke MV, Postigo A. ACS Catal. 2018; 8: 7287
    • 4a Bentel MJ, Yu Y, Xu L, Li Z, Wong BM, Men Y, Liu J. Environ. Sci. Technol. 2019; 53: 3718
    • 4b Liu J, Van Hoomissen DJ, Liu T, Maizel A, Huo X, Fernández SR, Ren C, Xiao X, Fang Y, Schaefer CE, Higgins CP, Vyas S, Strathmann TJ. Environ. Sci. Technol. Lett. 2018; 5: 289
  • 6 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press LLC; Boca Raton: 2003
  • 7 Sugihara N, Suzuki K, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 9308
  • 8 Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203

    • Selected reviews:
    • 9a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 9b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 9c Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 9d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035

      Other photocatalytic C–F activation reviews:
    • 10a Xu W, Zhang Q, Shao Q, Xia C, Wu M. Asian J. Org. Chem. 2021; 10: 2454
    • 10b Arora A, Weaver JD. Acc. Chem. Res. 2016; 49: 2273
    • 10c Tian F, Yan G, Yu J. Chem. Commun. 2019; 55: 13486
    • 10d Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
    • 10e Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 10f Zhou L. Molecules 2021; 26: 7051
    • 11a Yu YJ, Zhang FL, Peng TY, Wang CL, Cheng J, Chen C, Houk KN, Wang YF. Science 2021; 371: 1232
    • 11b Beckwith AL. J, Crich D, Duggan PJ, Yao Q. Chem. Rev. 1997; 97: 3273
    • 11c Wessig P, Muehling O. Eur. J. Org. Chem. 2007; 2219
    • 11d Newcomb M, Horner JH, Whitted PO, Crich D, Huang X, Yao Q, Zipse H. J. Am. Chem. Soc. 1999; 121: 10685
    • 11e Zipse H. Acc. Chem. Res. 1999; 32: 571
    • 11f Horner JH, Bagnol L, Newcomb M. J. Am. Chem. Soc. 2004; 126: 14979
    • 11g Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
    • 11h Fuse H, Nakao H, Saga Y, Fukatsu A, Kondo M, Masaoka S, Mitsunuma H, Kanai M. Chem. Sci. 2020; 11: 12206
    • 11i Jin J, MacMillan DW. C. Nature 2015; 525: 87
    • 11j Bieszczad B, Perego LA, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 16878
    • 11k Dong J, Wang Z, Wang X, Song H, Liu Y, Wang Q. Sci. Adv. 2019; 5: eaax9955
    • 11l Ashley MA, Rovis T. J. Am. Chem. Soc. 2020; 142: 18310
    • 11m Laot Y, Petit L, Zard SZ. Org. Lett. 2010; 12: 3426
    • 12a Loley S, Altman RA. Isr. J. Chem. 2020; 60: 313
    • 12b Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 12c Shen Q, Huang YG, Liu C, Xiao JC, Chen QY, Guo Y. J. Fluorine Chem. 2015; 179: 14
  • 13 Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
  • 14 Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
  • 15 Another mechanism involving the oxidation of HCO2– by ArCF2·has been considered, see: Li Y, Ye Z, Lin YM, Liu Y, Zhang Y, Gong L. Nat. Commun. 2021; 12: 2894
  • 16 Sap JB. I, Straathof NJ. W, Knauber T, Meyer CF, Médebielle M, Buglioni L, Genicot C, Trabanco AA, Noel T, am Ende CW, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 9181
  • 17 Hendy CM, Smith GC, Xu Z, Lian T, Jui NT. J. Am. Chem. Soc. 2021; 143: 8987
  • 18 Luo YC, Tong FF, Zhang Y, He CY, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
  • 19 Campbell MW, Polites VC, Patel S, Lipson JE, Majhi J, Molander GA. J. Am. Chem. Soc. 2021; 143: 19648
    • 20a Esumi N, Suzuki K, Nishimoto Y, Yasuda M. Chem. Eur. J. 2018; 24: 312
    • 20b Esumi N, Suzuki K, Nishimoto Y, Yasuda M. Org. Lett. 2016; 18: 5704
    • 20c Suzuki I, Esumi N, Yasuda M. Asian J. Org. Chem. 2016; 5: 179
  • 21 Uchikawa O, Sakai N, Terao Y, Suzuki H. US Patent WO2008016131(A1), 2009
    • 22a Ichikawa J, Fukui H, Ishibashi Y. J. Org. Chem. 2003; 68: 7800
    • 22b Ichikawa J, Miyazaki H, Sakoda K, Wada Y. J. Fluorine Chem. 2004; 125: 585
    • 22c Fuchibe K, Takahashi M, Ichikawa J. Angew. Chem. Int. Ed. 2012; 51: 12059
    • 22d Yang J, Mao A, Yue Z, Zhu W, Luo X, Zhu C, Xiao Y, Zhang J. Chem. Commun. 2015; 51: 8326
  • 23 Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
  • 24 Wang GZ, Shang R, Cheng WM, Fu Y. Org. Lett. 2015; 17: 4830
  • 25 He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
  • 26 Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
  • 27 Constantin T, Zanini M, Regni A, Sheikh NS, Juliá F, Leonori D. Science 2020; 367: 1021
  • 28 Yue F, Dong J, Liu Y, Wang Q. Org. Lett. 2021; 23: 7306
  • 29 Li CY, Ma Y, Lei ZW, Hu XG. Org. Lett. 2021; 23: 8899
  • 30 Wang Y, Deng LF, Zhang X, Mou ZD, Niu D. Angew. Chem. Int. Ed. 2021; 60: 2155
  • 31 Pan X.-C, Lacote E, Lalevee J, Curran DP. J. Am. Chem. Soc. 2012; 134: 5669
  • 32 Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
  • 33 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
  • 34 Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. J. Am. Chem. Soc. 2019; 141: 3723
  • 35 Shi J, Guo LY, Hu QP, Liu YT, Li Q, Pan F. Org. Lett. 2021; 23: 8822
  • 36 Wu LH, Cheng JK, Shen L, Shen ZL, Loh TL. Adv. Synth. Catal. 2018; 360: 3894
  • 37 Xiang P, He L, Li H, Qi Z, Zhang M, Fu Q, Wei J, Dub X, Yi D, Wei S. Tetrahedron Lett. 2020; 61: 152369
  • 38 Chen H, Anand D, Zhou L. Asian J. Org. Chem. 2019; 8: 661
  • 39 Chen Y, Ni N, Cheng D, Xu X. Tetrahedron Lett. 2020; 61: 152425
  • 40 Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371
  • 41 Li Y, Wang D, Zhang L, Luo S. J. Org. Chem. 2019; 84: 12071
  • 42 Li L, Xiao T, Chen H, Zhou L. Chem. Eur. J. 2017; 23: 2249
  • 43 Chen H, Xiao T, Li L, Anand D, He Y, Zhou L. Adv. Synth. Catal. 2017; 359: 3642
  • 44 Chen H, He Y, Zhou L. Org. Chem. Front. 2018; 5: 3240
  • 45 Yue WJ, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395