Synthesis 2022; 54(12): 2876-2884
DOI: 10.1055/a-1755-4700
paper

Iridium-Catalyzed Acceptorless Dehydrogenative Coupling of 2-Aminoarylmethanols with Amides or Nitriles to Synthesize Quinazolines

Hongling Shui
,
Yuhong Zhong
,
Lu Ouyang
,
Nianhua Luo
,
Renshi Luo
This work was supported by the National Natural Science Foundation of China (21962004), Jiangxi Provincial Department of Science and Technology (20192BAB203004), and the Fundamental Research Funds for Gannan Medical University (QD201810, TD2021YX05) for financial support.


Abstract

An efficient iridium-catalyzed acceptorless dehydrogenative coupling (ADC) reaction for the preparation of various quinazolines from 2-aminoarylmethanols and amides or nitriles had been developed. A wide range of substituted 2-aminobenzyl alcohols and (hetero)aryl or alkyl benzamides and nitriles were well compatible to afford various quinazolines in excellent yields. Merits of this new strategy are the high atom-economy, mild reaction conditions, and simple operation, and the methodology is suitable for a variety of substrates.

Supporting Information



Publication History

Received: 31 December 2021

Accepted after revision: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
22 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Parhi AK, Zhang Y, Saionz KW, Pradhan P, Kaul M, Trivedi K, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2013; 23: 4968
    • 1b Chien T.-C, Chen C.-S, Yu F.-H, Chern J.-W. Chem. Pharm. Bull. 2004; 52: 1422
    • 1c Ugale VG, Bari SB. Eur. J. Med. Chem. 2014; 80: 447
    • 1d Juvale K, Gallus J, Wiese W. Bioorg. Med. Chem. 2013; 21: 7858
    • 1e Ple PA, Green TP, Hennequin LF, Curwen J, Fennell M, Allen J, Lambert-van der Brempt C, Costello G. J. Med. Chem. 2004; 47: 871
  • 2 Akduman B, Crawford ED. Urology 2001; 58: 49
    • 3a Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D. N. Engl. J. Med. 2006; 355: 2733
    • 3b Johnston S, Pippen JJr, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF, Maltzman J, Florance A, O’Rourke L, Oliva C, Stein S, Pegram M. J. Clin. Oncol. 2009; 27: 5538
  • 4 Tan F, Shen X, Wang D, He W, Wang Y, Wang Y. Lung Cancer 2012; 76: 177
    • 5a Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 5b Khan I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 5c Abdou IM, Al-Neyadi SS. Heterocycl. Commun. 2015; 21: 115
    • 6a Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application, Vol. 1–4. McGuire JL. Wiley-VCH; Weinheim: 2000
    • 6b Brown BR. The Organic Chemistry of Aliphatic Nitrogen Compounds 2004
    • 7a Han B, Wang C, Han RF, Yu W, Duan XY, Fang R, Yang XL. Chem. Commun. 2011; 47: 7818
    • 7b Panja SK, Saha S. RSC Adv. 2013; 3: 14495
    • 7c Panja SK, Dwivedi N, Saha S. Tetrahedron Lett. 2012; 53: 6167
    • 7d Yan YZ, Zhang YH, Feng CT, Zha ZG, Wang ZY. Angew. Chem. Int. Ed. 2012; 51: 8077
    • 8a Chen Z, Chen J, Liu M, Ding J, Gao W, Huang X, Wu H. J. Org. Chem. 2013; 78: 11342
    • 8b Yao S, Zhou K, Wang J, Cao H, Yu L, Wu J, Qiu P, Xu Q. Green Chem. 2017; 19: 2945
    • 8c Wan X.-M, Liu Z.-L, Liu W.-Q, Cao X.-N, Zhu X, Zhao X.-M, Song B, Hao X.-Q, Liu G. Tetrahedron 2019; 75: 2697
    • 8d Sarode SA, Jadhav VG, Nagarkar JM. Tetrahedron Lett. 2017; 58: 779
    • 9a Truong VL, Morrow M. Tetrahedron Lett. 2010; 51: 758
    • 9b Xu C, Jia FC, Zhou ZW, Zheng SJ, Li H, Wu AX. J. Org. Chem. 2016; 81: 3000
    • 10a Han B, Yang XL, Wang C, Bai YW, Pan TC, Chen X, Yu W. J. Org. Chem. 2012; 77: 1136
    • 10b Yamaguchi T, Sakairi K, Yamaguchi E, Tada N, Itoh A. RSC Adv. 2016; 6: 56892
    • 10c Peng YY, Zeng Y, Qiu G, Cai L, Pike VW. J. Heterocycl. Chem. 2010; 47: 1240
    • 10d Maheswari CU, Kumar GS, Venkateshwar M, Kumar RA, Kantam ML, Reddy KR. Adv. Synth. Catal. 2010; 352: 341
    • 10e Yuan H, Yoo WJ, Miyamura H, Kobayashi S. Adv. Synth. Catal. 2012; 354: 2899
    • 10f Fang J, Zhou JG, Fang ZJ. RSC Adv. 2013; 3: 334
    • 11a Lin JP, Zhang FH, Long YQ. Org. Lett. 2014; 16: 2822
    • 11b Zhang W, Guo F, Wang F, Zhao N, Liu L, Li J, Wang ZH. Org. Biomol. Chem. 2014; 12: 5752
    • 11c Ohta Y, Tokimizu Y, Oishi S, Fujii N, Ohno H. Org. Lett. 2010; 12: 3963
    • 12a Cheng C, Fu H, Liu Q, Zhao Y. Synlett 2013; 24: 2089
    • 12b Wang C, Li S, Liu H, Jiang Y, Fu H. J. Org. Chem. 2010; 75: 7936
    • 12c Omar MA, Conrad J, Beifuss U. Tetrahedron 2014; 70: 5682
    • 12d Omar MA, Conrad J, Beifuss U. Tetrahedron 2014; 70: 3061
  • 13 Malakar CC, Baskakova A, Conrad J, Beifuss U. Chem. Eur. J. 2012; 18: 8882
    • 14a Ma J, Wan Y, Hong C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Eur. J. Org. Chem. 2017; 3335
    • 14b Saha M, Mukherjee P, Das AR. Tetrahedron Lett. 2017; 58: 2044
    • 15a Tan Z, Fu Z, Yang J, Wu Y, Cao L, Jiang H, Li J, Zhang M. iScience 2020; 23: 101003
    • 15b Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
    • 15c Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
  • 16 Mondal A, Sahoo MK, Subaramanian M, Balaraman E. J. Org. Chem. 2020; 85: 7181
  • 17 Das K, Mondal A, Pal D, Srimani D. Org. Lett. 2019; 21: 3223
    • 18a Chen M, Zhang M, Xiong B, Tan Z, Lv W, Jiang H. Org. Lett. 2014; 16: 6028
    • 18b Kirinde Arachchige PT, Yi CS. Org. Lett. 2019; 21: 3337
  • 19 Fan H, Zhang W, Zhao W, Li F. ChemistrySelect 2017; 2: 5735
  • 20 Parua S, Sikari R, Sinha S, Chakraborty G, Mondal R, Paul ND. J. Org. Chem. 2018; 83: 11154
  • 21 Zhang S.-Q, Cui Y, Guo B, Young DJ, Xu Z, Li H.-X. Tetrahedron 2021; 78: 131825
    • 22a Luo N, Zhong Y, Shui H, Luo R. J. Org. Chem. 2021; 86: 15509
    • 22b Wen H, Luo N, Zhu Q, Luo R. J. Org. Chem. 2021; 86: 3850
    • 22c Luo N, Zhong Y, Wen H, Luo R. ACS Omega 2020; 5: 27723
    • 22d Ouyang L, Xia Y, Liao J, Luo R. Eur. J. Org. Chem. 2020; 6387
    • 22e Luo N, Zhong Y, Shui H, Wen H, Luo R. Eur. J. Org. Chem. 2021; 1355
    • 22f Ouyang L, Xia Y, Liao J, Miao R, Yang X, Luo R. ACS Omega 2021; 6: 10415
    • 22g Luo N, Liao J, Ouyang L, Wen H, Liu J, Tang W, Luo R. Organometallics 2019; 38: 3025
    • 22h Luo N, Liao J, Ouyang L, Wen H, Zhong Y, Liu J, Tang W, Luo R. Organometallics 2020; 39: 165
  • 23 Sikari R, Chakraborty G, Guin AK, Paul ND. J. Org. Chem. 2021; 86: 279
  • 24 Ma J.-T, Wang L.-S, Chai Z, Chen X.-F, Tang B.-C, Chen X.-L, He C, Wu Y.-D, Wu A.-X. Chem. Commun. 2021; 57: 5414
  • 25 Gellis A, Kieffer C, Primas N, Lanzada G, Giorgi M, Verhaeghe P, Vanelle P. Tetrahedron 2014; 70: 8257
  • 26 Tiwaria AR, Bhanage BM. Org. Biomol. Chem. 2016; 14: 10567
  • 27 Putta RR, Chun S, Lee SB, Hong J, Oh D.-C, Hong S. RSC Adv. 2021; 11: 18225
  • 28 Saadati S, Ghorashi N, Rostami A, Kobarfard F. Eur. J. Org. Chem. 2018; 4050