Klin Monbl Augenheilkd 2022; 239(03): 263-269
DOI: 10.1055/a-1757-9879
Übersicht

Benefits and Shortcomings of Laboratory Model Systems in the Development of Genetic Therapies

Vorteile und Defizite von Labormodellsystemen bei der Entwicklung von Gentherapieverfahren
Kirsten Bucher*
1   University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
2   Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
,
Eduardo Rodriguez-Bocanegra*
1   University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
,
M. Dominik Fischer
1   University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
2   Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
3   Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom of Great Britain and Northern Ireland
4   Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations

Abstract

Gene therapeutic approaches promise treatment or even a cure of diseases that were previously untreatable. Retinal gene therapies tested in clinical trials comprise a wide range of different strategies, including gene supplementation therapies, in vivo gene editing, modulation of splicing mechanisms, or the suppression of gene expression. To guarantee efficient transfer of genetic material into the respective target cells while avoiding major adverse effects, the development of genetic therapies requires appropriate in vitro model systems that allow tests of efficacy and safety of the gene therapeutic approach. In this review, we introduce various in vitro models of different levels of complexity used in the development of genetic therapies and discuss their respective benefits and shortcomings using the example of adeno-associated virus-based retinal gene therapy.

Zusammenfassung

Gentherapeutische Ansätze versprechen die Behandlung oder sogar Heilung von Erkrankungen, die bisher nicht behandelbar waren. Die in klinischen Studien getesteten Gentherapien für die Netzhaut umfassen ein breites Spektrum unterschiedlicher Strategien, darunter Genergänzungstherapien, In-vivo-Gene-Editing, Modulation von Splicing-Mechanismen oder die Unterdrückung der Genexpression. Um einen effizienten Transfer des genetischen Materials in die jeweiligen Zielzellen zu gewährleisten und gleichzeitig schwerwiegende unerwünschte Wirkungen zu vermeiden, erfordert die Entwicklung von Gentherapien geeignete In-vitro-Modellsysteme, mit denen die Wirksamkeit und Sicherheit des gentherapeutischen Ansatzes getestet werden kann. In diesem Übersichtsartikel werden verschiedene In-vitro-Modelle unterschiedlicher Komplexität vorgestellt, die bei der Entwicklung von Gentherapien verwendet werden, und ihre jeweiligen Vor- und Nachteile werden am Beispiel der AAV-basierten Gentherapie der Netzhaut diskutiert.

* Bucher and Rodriguez-Bocanegra share first authorship.




Publication History

Received: 06 October 2021

Accepted: 31 January 2022

Article published online:
22 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kumar SR, Markusic DM, Biswas M. et al. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3: 16034
  • 2 Russell S, Bennett J, Wellman JA. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390: 849-860
  • 3 Lee S, Kang IK, Kim JH. et al. Relationship Between Neutralizing Antibodies Against Adeno-Associated Virus in the Vitreous and Serum: Effects on Retinal Gene Therapy. Transl Vis Sci Technol 2019; 8: 14
  • 4 Bucher K, Rodríguez-Bocanegra E, Dauletbekov D. et al. Immune responses to retinal gene therapy using adeno-associated viral vectors – Implications for treatment success and safety. Prog Retin Eye Res 2021; 83: 100915
  • 5 Moreno AM, Fu X, Zhu J. et al. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Mol Ther 2018; 26: 1818-1827
  • 6 Bulcha JT, Wang Y, Ma H. et al. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6: 1-24
  • 7 Orlans HO, McClements ME, Barnard AR. et al. Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nat Commun 2021; 12: 1-13
  • 8 Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32: 22-47
  • 9 Ronzitti G, Gross DA, Mingozzi F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2020; 11: 670
  • 10 Trapani I, Colella P, Sommella A. et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 2014; 6: 194-211
  • 11 Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21: 4197
  • 12 Tustian AD, Bak H. Assessment of quality attributes for adeno-associated viral vectors. Biotechnol Bioeng 2021; 118: 4186-4203
  • 13 Hornung V, Rothenfusser S, Britsch S. et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002; 168: 4531-4537
  • 14 Wiser C, Kim B, Vincent J. et al. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells. Sci Rep 2020; 10: 7604
  • 15 Ran G, Chen X, Xie Y. et al. Site-Directed Mutagenesis Improves the Transduction Efficiency of Capsid Library-Derived Recombinant AAV Vectors. Mol Ther Methods Clin Dev 2020; 17: 545-555
  • 16 Liu Y, Joo KI, Wang P. Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Ther 2013; 20: 308-317
  • 17 Rumachik NG, Malaker SA, Poweleit N. et al. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol Ther Methods Clin Dev 2020; 18: 98-118
  • 18 Grimm D, Lee JS, Wang L. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82: 5887-5911
  • 19 Patrício MI, Barnard AR, Cox CI. et al. The Biological Activity of AAV Vectors for Choroideremia Gene Therapy Can Be Measured by In Vitro Prenylation of RAB6A. Mol Ther Methods Clin Dev 2018; 9: 288-295
  • 20 Couto LB, Buchlis G, Farjo R. et al. Potency assay for AAV vector encoding retinal pigment epithelial 65 protein. Invest Ophthalmol Vis Sci 2016; 57: 759
  • 21 Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83: 2632-2644
  • 22 Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438-1445
  • 23 Pillay S, Meyer NL, Puschnik AS. et al. An essential receptor for adeno-associated virus infection. Nature 2016; 530: 108-112
  • 24 Jaluria P, Betenbaugh M, Konstantopoulos K. et al. Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol 2007; 7: 1-11
  • 25 Russell DW, Miller AD, Alexander IE. Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci U S A 1994; 91: 8915-8919
  • 26 Ellis BL, Hirsch ML, Barker JC. et al. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1–9) and one engineered adeno-associated virus serotype. Virol J 2013; 10: 1-10
  • 27 Gonzalez-Cordero A, Goh D, Kruczek K. et al. Assessment of AAV Vector Tropisms for Mouse and Human Pluripotent Stem Cell–Derived RPE and Photoreceptor Cells. Hum Gene Ther 2018; 29: 1124-1139
  • 28 Achilli C, Ciana A, Minetti G. Immortalized HEK 293 kidney cell lines as models of renal cells: friends or foes?. J Controversies Biomed Res 2018; 4: 6-9
  • 29 Landry JJM, Pyl PT, Rausch T. et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 2013; 3: 1213-1224
  • 30 Park EK, Jung HS, Yang HI. et al. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007; 56: 45-50
  • 31 Schwende H, Fitzke E, Ambs P. et al. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 1996; 59: 555-561
  • 32 Li ZH, Si Y, Xu G. et al. High-dose PMA with RANKL and MCSF induces THP-1 cell differentiation into human functional osteoclasts in vitro . Mol Med Rep 2017; 16: 8380-8384
  • 33 Zaiss AK, Cotter MJ, White LR. et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 2008; 82: 2727-2740
  • 34 Ye Y, Gaugler B, Mohty M. et al. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunol 2020; 9: e1139
  • 35 Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adenoassociated virus gene therapy vectors in mice. J Clin Invest 2009;
  • 36 Cho CH, Yoon SY, Lee CK. et al. Effect of interleukin-29 on interferon-α secretion by peripheral blood mononuclear cells. Cell J 2015; 16: 528-537
  • 37 Rossi A. Intracellular fate of AAV particles in human Dendritic Cell and impact on Gene Transfer. 2016. Accessed May 5, 2021 at: https://tel.archives-ouvertes.fr/tel-02491137
  • 38 Rossi A, Dupaty L, Aillot L. et al. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep 2019; 9: 1-14
  • 39 Sauter A, Mc Duffie Y, Boehm H. et al. Surface-mediated priming during in vitro generation of monocyte-derived dendritic cells. Scand J Immunol 2015; 81: 56-65
  • 40 Ilchmann A, Krause M, Heilmann M. et al. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor. Mol Immunol 2012; 51: 42-50
  • 41 Liu C, Oikonomopoulos A, Sayed N. et al. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 2018; 145: dev156166
  • 42 Kruczek K, Swaroop A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 2020; 38: 1206-1215
  • 43 Lingam S, Liu Z, Yang B. et al. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res Ther 2021; 12: 1-14
  • 44 Jha BS, Bharti K. Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue. Curr Stem Cell Rep 2015; 1: 79-91
  • 45 Kuznetsova AV, Kurinov AM, Aleksandrova MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J Ophthalmol 2014; 2014: 801787
  • 46 Hansen KA, Sugino IK, Yagi F. et al. Adeno-associated virus encoding green fluorescent protein as a label for retinal pigment epithelium. Invest Ophthalmol Vis Sci 2003; 44: 772-780
  • 47 Cereso N, Pequignot MO, Robert L. et al. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. Mol Ther Methods Clin Dev 2014; 1: 14011
  • 48 Auricchio A, Kobinger G, Anand V. et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075-3081
  • 49 Garita-Hernandez M, Routet F, Guibbal L. et al. AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21: 994
  • 50 Wright JF, Sumaroka M. Rab Escort Protein Potency Assay. U.S. Patent 201662418637P, 11.09.2019
  • 51 Kumar MV, Nagineni CN, Chin MS. et al. Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 2004; 153: 7-15
  • 52 Nagineni CN, Pardhasaradhi K, Martins MC. et al. Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells. Infect Immun 1996; 64: 4188-4196
  • 53 Achberger K, Probst C, Haderspeck JC. et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife 2019; 8: e46188
  • 54 Cowan CS, Renner M, De Gennaro M. et al. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2020; 182: 1623-1640.e34
  • 55 Kruczek K, Qu Z, Gentry J. et al. Gene Therapy of Dominant CRX-Leber Congenital Amaurosis using Patient Stem Cell-Derived Retinal Organoids. Stem Cell Reports 2021; 16: 252-263
  • 56 Quinn PM, Buck TM, Mulder AA. et al. Human iPSC-Derived Retinas Recapitulate the Fetal CRB1 CRB2 Complex Formation and Demonstrate that Photoreceptors and Müller Glia Are Targets of AAV5. Stem Cell Reports 2019; 12: 906-919
  • 57 Achberger K, Cipriano M, Düchs M. et al. Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports 2021; 16: 2242-2256
  • 58 Singh PK, Kumar A. Retinal photoreceptor expresses toll-like receptors (TLRs) and elicits innate responses following TLR ligand and bacterial challenge. PLoS One 2015; 10: e0119541
  • 59 Sauter MM, Kolb AW, Brandt CR. Toll-like receptors 4, 5, 6 and 7 are constitutively expressed in non-human primate retinal neurons. J Neuroimmunol 2018; 322: 26-35
  • 60 Lin X, Fang D, Zhou H. et al. The expression of Toll-like receptors in murine Müller cells, the glial cells in retina. Neurol Sci 2013; 34: 1339-1346
  • 61 Yin X, Mead BE, Safaee H. et al. Engineering Stem Cell Organoids. Cell Stem Cell 2016; 18: 25-38
  • 62 Zhong X, Gutierrez C, Xue T. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 2014; 5: 1-14
  • 63 Achberger K, Haderspeck JC, Kleger A. et al. Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140: 33-50
  • 64 Akhtar T, Xie H, Khan MI. et al. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res 2019; 39: 101491
  • 65 Chichagova V, Georgiou M, Dorgau B. et al. Enhancing immune function of hiPSC-derived retinal organoids by incorporating microglial cells. Invest Ophthalmol Vis Sci 2020; 61: 3797
  • 66 Orlans HO, Edwards TL, De Silva SR. et al. Human Retinal Explant Culture for Ex Vivo Validation of AAV Gene Therapy. Methods Mol Biol 2018; 1715: 289-303
  • 67 Murali A, Ramlogan-Steel CA, Andrzejewski S. et al. Retinal explant culture: A platform to investigate human neuro-retina. Clin Experiment Ophthalmol 2019; 47: 274-285
  • 68 Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012; 20: 699-708