CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2022; 82(07): 719-726
DOI: 10.1055/a-1761-1337
GebFra Science
Review

Neue Marker der plazentaren Dysfunktion am Entbindungstermin – Potenzial für mehr

Article in several languages: English | deutsch
Oliver Graupner
1   Klinik für Gynäkologie und Geburtsmedizin, Universitätsklinikum Aachen, RWTH Aachen, Aachen
2   Frauenklinik und Poliklinik, Universitätsklinikum rechts der Isar, Technische Universität München, München
,
Bettina Kuschel
2   Frauenklinik und Poliklinik, Universitätsklinikum rechts der Isar, Technische Universität München, München
,
Roland Axt-Fliedner
3   Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum UKGM, Justus-Liebig-Universität Gießen, Gießen
,
Christian Enzensberger
1   Klinik für Gynäkologie und Geburtsmedizin, Universitätsklinikum Aachen, RWTH Aachen, Aachen
› Author Affiliations

Zusammenfassung

Die verbleibende plazentare Reserve am Entbindungstermin ist entscheidend für die perinatale Morbidität von Kind und Mutter. Angesichts des Fortschritts im Bereich der fetalen Überwachung sind die bislang routinemäßig eingesetzten Untersuchungstechniken am Termin bzw. in der Terminüberschreitung womöglich unzureichend, wenn es um die Detektion der subklinischen plazentaren Dysfunktion (PD) geht. Ziel dieser Arbeit ist es, eine aktuelle, narrative Literaturübersicht im Kontext der PD-Detektion am Termin mittels komplementärer US- bzw. Biomarker zu geben. Zu den potenziellen PD-Markern zählen Parameter der fetomaternalen Doppler-Sonografie bzw. fetalen kardialen Funktion sowie (anti-)angiogene Faktoren im Serum der Mutter. Diese könnten eine Rolle spielen, wenn es um die verbesserte Selektion derjenigen Patientinnen geht, bei denen eine elektive, frühzeitige Geburtseinleitung am Entbindungstermin womöglich zur Reduktion der perinatalen Morbidität und Mortalität führt. Ihren Stellenwert bezogen auf die Frage des idealen Entbindungszeitpunkts gilt es jedoch vorerst in randomisiert-kontrollierten Studien mit großer Fallzahl zu klären.



Publication History

Received: 30 November 2021

Accepted after revision: 03 February 2022

Article published online:
07 July 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 IQTIG. Bundesauswertung der Qualitätsindikatoren Geburtshilfe 2016. IQTIG – Institut für Qualitätssicherung und Transparenz im Gesundheitswesen, 2017. Accessed March 06, 2022 at: https://iqtig.org/downloads/auswertung/2016/16n1gebh/QSKH_16n1GEBH_2016_BUAW_V02_2017-07-12.pdf
  • 2 Turner JM, Mitchell MD, Kumar SS. The physiology of intrapartum fetal compromise at term. Am J Obstet Gynecol 2020; 222: 17-26
  • 3 Janbu T, Nesheim BI. Uterine artery blood velocities during contractions in pregnancy and labour related to intrauterine pressure. Br J Obstet Gynaecol 1987; 94: 1150-1155
  • 4 Sherrell H, Clifton V, Kumar S. Predicting intrapartum fetal compromise at term using the cerebroplacental ratio and placental growth factor levels (PROMISE) study: randomised controlled trial protocol. BMJ Open 2018; 8: e022567
  • 5 Low JA, Pickersgill H, Killen H. et al. The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 2001; 184: 724-730
  • 6 Kehl S, Schelkle A, Thomas A. et al. Single deepest vertical pocket or amniotic fluid index as evaluation test for predicting adverse pregnancy outcome (SAFE trial): a multicenter, open-label, randomized controlled trial. Ultrasound Obstet Gynecol 2016; 47: 674-679
  • 7 Lees CC, Stampalija T, Baschat A. et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol 2020; 56: 298-312
  • 8 Grivell RM, Alfirevic Z, Gyte GM. et al. Antenatal cardiotocography for fetal assessment. Cochrane Database Syst Rev 2015; 2015 (09) CD007863
  • 9 Ayres-de-Campos D, Spong CY, Chandraharan E. FIGO Intrapartum Fetal Monitoring Expert Consensus Panel. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J Gynaecol Obstet 2015; 131: 13-24
  • 10 Baschat AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 2011; 37: 501-514
  • 11 Kiserud T. Physiology of the fetal circulation. Semin Fetal Neonatal Med 2005; 10: 493-503
  • 12 Devane D, Lalor JG, Daly S. et al. Cardiotocography versus intermittent auscultation of fetal heart on admission to labour ward for assessment of fetal wellbeing. Cochrane Database Syst Rev 2012; (02) CD005122
  • 13 Pinas A, Chandraharan E. Continuous cardiotocography during labour: Analysis, classification and management. Best Pract Res Clin Obstet Gynaecol 2016; 30: 33-47
  • 14 Ayres-de-Campos D, Bernardes J, Costa-Pereira A. et al. Inconsistencies in classification by experts of cardiotocograms and subsequent clinical decision. Br J Obstet Gynaecol 1999; 106: 1307-1310
  • 15 Vasak B, Koenen SV, Koster MP. et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol 2015; 45: 162-167
  • 16 Grobman WA, Rice MM, Reddy UM. et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal–Fetal Medicine Units Network. Labor Induction versus Expectant Management in Low-Risk Nulliparous Women. N Engl J Med 2018; 379: 513-523
  • 17 Yisma E, Mol BW, Lynch JW. et al. Elective labor induction vs. expectant management of pregnant women at term and childrenʼs educational outcomes at 8 years of age. Ultrasound Obstet Gynecol 2021; 58: 99-104
  • 18 Wennerholm UB, Saltvedt S, Wessberg A. et al. Induction of labour at 41 weeks versus expectant management and induction of labour at 42 weeks (SWEdish Post-term Induction Study, SWEPIS): multicentre, open label, randomised, superiority trial. BMJ 2019; 367: l6131
  • 19 Keulen JK, Bruinsma A, Kortekaas JC. et al. Induction of labour at 41 weeks versus expectant management until 42 weeks (INDEX): multicentre, randomised non-inferiority trial. BMJ 2019; 364: l344
  • 20 Kehl S, Hösli I, Pecks U. et al. Induction of Labour. Guideline of the DGGG, OEGGG and SGGG (S2k, AWMF Registry No. 015–088, December 2020). Geburtshilfe Frauenheilkd 2021; 81: 870-895
  • 21 Middleton P, Shepherd E, Morris J. et al. Induction of labour at or beyond 37 weeksʼ gestation. Cochrane Database Syst Rev 2020; (07) CD004945
  • 22 Gleason JL, Gilman SE, Sundaram R. et al. Gestational age at term delivery and childrenʼs neurocognitive development. Int J Epidemiol 2021; 50: 1814-1823
  • 23 Spong CY. Defining “term” pregnancy: recommendations from the Defining “Term” Pregnancy Workgroup. JAMA 2013; 309: 2445-2446
  • 24 Smith GC. Life-table analysis of the risk of perinatal death at term and post term in singleton pregnancies. Am J Obstet Gynecol 2001; 184: 489-496
  • 25 Muglu J, Rather H, Arroyo-Manzano D. et al. Risks of stillbirth and neonatal death with advancing gestation at term: A systematic review and meta-analysis of cohort studies of 15 million pregnancies. PLoS Med 2019; 16: e1002838
  • 26 Khalil A, Morales-Roselló J, Townsend R. et al. Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol 2016; 47: 74-80
  • 27 Monaghan C, Binder J, Thilaganathan B. et al. Perinatal loss at term: role of uteroplacental and fetal Doppler assessment. Ultrasound Obstet Gynecol 2018; 52: 72-77
  • 28 Khalil AA, Morales-Rosello J, Morlando M. et al. Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission?. Am J Obstet Gynecol 2015; 213: 54.e1-54.e10
  • 29 Khalil A, Morales-Rosello J, Khan N. et al. Is cerebroplacental ratio a marker of impaired fetal growth velocity and adverse pregnancy outcome?. Am J Obstet Gynecol 2017; 216: 606.e1-606.e10
  • 30 Morales-Roselló J, Khalil A, Morlando M. et al. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 2015; 45: 156-161
  • 31 Sirico A, Diemert A, Glosemeyer P. et al. Prediction of adverse perinatal outcome by cerebroplacental ratio adjusted for estimated fetal weight. Ultrasound Obstet Gynecol 2018; 51: 381-386
  • 32 Akolekar R, Ciobanu A, Zingler E. et al. Routine assessment of cerebroplacental ratio at 35–37 weeksʼ gestation in the prediction of adverse perinatal outcome. Am J Obstet Gynecol 2019; 221: 65.e1-65.e18
  • 33 Fiolna M, Kostiv V, Anthoulakis C. et al. Prediction of adverse perinatal outcome by cerebroplacental ratio in women undergoing induction of labor. Ultrasound Obstet Gynecol 2019; 53: 473-480
  • 34 Bligh LN, Alsolai AA, Greer RM. et al. Cerebroplacental ratio thresholds measured within 2 weeks before birth and risk of Cesarean section for intrapartum fetal compromise and adverse neonatal outcome. Ultrasound Obstet Gynecol 2018; 52: 340-346
  • 35 Prior T, Mullins E, Bennett P. et al. Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 2013; 208: 124.e1-124.e6
  • 36 Vollgraff Heidweiller-Schreurs CA, De Boer MA, Heymans MW. et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018; 51: 313-322
  • 37 Dunn L, Sherrell H, Kumar S. Review: Systematic review of the utility of the fetal cerebroplacental ratio measured at term for the prediction of adverse perinatal outcome. Placenta 2017; 54: 68-75
  • 38 DeVore GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 2015; 213: 5-15
  • 39 Ortiz JU, Graupner O, Karge A. et al. Does gestational age at term play a role in the association between cerebroplacental ratio and operative delivery for intrapartum fetal compromise?. Acta Obstet Gynecol Scand 2021; 100: 1910-1916
  • 40 Kalafat E, Khalil A. Umbilicocerebral ratio: potential implications of inversing the cerebroplacental ratio. Ultrasound Obstet Gynecol 2020; 56: 159-162
  • 41 Stampalija T, Thornton J, Marlow N. et al. TRUFFLE-2 Group. Fetal cerebral Doppler changes and outcome in late preterm fetal growth restriction: prospective cohort study. Ultrasound Obstet Gynecol 2020; 56: 173-181
  • 42 MacDonald TM, Hui L, Robinson AJ. et al. Cerebral-placental-uterine ratio as novel predictor of late fetal growth restriction: prospective cohort study. Ultrasound Obstet Gynecol 2019; 54: 367-375
  • 43 DallʼAsta A, Ghi T, Rizzo G. et al. VP54.04: Cerebral-placental uterine ratio assessment in early labour in low-risk term pregnancy and prediction of adverse outcome: prospective multicentre study. Ultrasound Obstet Gynecol 2020; 56 (Suppl. 01) 57-378
  • 44 Morales-Roselló J, Buongiorno S, Loscalzo G. et al. Does Uterine Doppler Add Information to the Cerebroplacental Ratio for the Prediction of Adverse Perinatal Outcome at the End of Pregnancy?. Fetal Diagn Ther 2020; 47: 34-44
  • 45 Stepan H, Herraiz I, Schlembach D. et al. Implementation of the sFlt-1/PlGF ratio for prediction and diagnosis of pre-eclampsia in singleton pregnancy: implications for clinical practice. Ultrasound Obstet Gynecol 2015; 45: 241-246
  • 46 Brown MA, Magee LA, Kenny LC. et al. International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018; 72: 24-43
  • 47 Stepan H, Hund M, Andraczek T. Combining Biomarkers to Predict Pregnancy Complications and Redefine Preeclampsia: The Angiogenic-Placental Syndrome. Hypertension 2020; 75: 918-926
  • 48 German Society of Obstetrics and Gynecology (DGGG); Austrian Society of Obstetrics and Gynecology (OEGG), Swiss Society of Obstetrics and Gynecology (SGGG). Guidelines for Hypertensive Disorders in Pregnancy. Diagnosis and therapy. Updated May 2019. Accessed March 06, 2022 at: https://www.awmf.org/leitlinien/detail/ll/015-018.html
  • 49 Graupner O, Enzensberger C. Prediction of Adverse Pregnancy Outcome Related to Placental Dysfunction Using the sFlt-1/PlGF Ratio: A Narrative Review. Geburtshilfe Frauenheilkd 2021; 81: 948-954
  • 50 Fiolna M, Machuca M, Karampitsakos T. et al. Prediction of adverse perinatal outcome by serum placental growth factor and soluble fms-like tyrosine kinase-1 in women undergoing induction of labor. Ultrasound Obstet Gynecol 2019; 54: 604-608
  • 51 Bligh LN, Alsolai AA, Greer RM. et al. Prelabor screening for intrapartum fetal compromise in low-risk pregnancies at term: cerebroplacental ratio and placental growth factor. Ultrasound Obstet Gynecol 2018; 52: 750-756
  • 52 Mitlid-Mork B, Bowe S, Gran JM. et al. Maternal placental growth factor and soluble fms-like tyrosine kinase-1 reference ranges in post-term pregnancies: A prospective observational study. PLoS One 2020; 15: e0240473
  • 53 Bowe S, Mitlid-Mork B, Georgieva A. et al. The association between placenta-associated circulating biomarkers and composite adverse delivery outcome of a likely placental cause in healthy post-date pregnancies. Acta Obstet Gynecol Scand 2021; 100: 1893-1901
  • 54 Alsolai AA, Bligh LN, Greer RM. et al. Relationship of prelabor fetal cardiac function with intrapartum fetal compromise and neonatal status at term. Ultrasound Obstet Gynecol 2018; 51: 799-805
  • 55 Alsolai AA, Bligh LN, Greer RM. et al. Correlation between fetoplacental Doppler indices and measurements of cardiac function in term fetuses. Ultrasound Obstet Gynecol 2019; 53: 358-366
  • 56 Wladimiroff JW, Tonge HM, Stewart PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br J Obstet Gynaecol 1986; 93: 471-475
  • 57 Fouron JC, Skoll A, Sonesson SE. et al. Relationship between flow through the fetal aortic isthmus and cerebral oxygenation during acute placental circulatory insufficiency in ovine fetuses. Am J Obstet Gynecol 1999; 181 (5 Pt 1): 1102-1107
  • 58 al-Ghazali W, Chita SK, Chapman MG. et al. Evidence of redistribution of cardiac output in asymmetrical growth retardation. Br J Obstet Gynaecol 1989; 96: 697-704
  • 59 Rizzo G, Arduini D, Romanini C. Doppler echocardiographic assessment of fetal cardiac function. Ultrasound Obstet Gynecol 1992; 2: 434-445
  • 60 Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010; 2010: 401323
  • 61 Graupner O, Enzensberger C. Kardiale Funktionsanalyse beim Feten: Schritt für Schritt. Gynäkologe 2022; 55: 7-13
  • 62 van Oostrum NHM, Derks K, van der Woude DAA. et al. Two-dimensional Speckle tracking echocardiography in Fetal Growth Restriction: a systematic review. Eur J Obstet Gynecol Reprod Biol 2020; 254: 87-94
  • 63 Graupner O, Ried C, Wildner NK. et al. Myocardial deformation analysis in late-onset small-for-gestational-age and growth-restricted fetuses using two-dimensional speckle tracking echocardiography: a prospective cohort study. J Perinat Med 2021;
  • 64 Figueras F, Gratacos E, Rial M. et al. Revealed versus concealed criteria for placental insufficiency in an unselected obstetric population in late pregnancy (RATIO37): randomised controlled trial study protocol. BMJ Open 2017; 7: e014835