Subscribe to RSS
DOI: 10.1055/a-1766-7268
Differences in Mean Values and Variance in Quantitative Analyses of Foveal OCTA Imaging
Unterschiede in Mittelwerten und Varianz bei quantitativen OCTA-Analysen der Fovea
Abstract
Purpose Multiple approaches for quantifying parameters such as vessel density (VD) and vessel length density (VLD) in optical coherence tomography angiography (OCTA) en-face segmentations are currently available. While it is common knowledge that data gathered from different methods should not be directly compared to each other, a comparison of the different methods can help to further the understanding of differences between different methods of measurement. Here we compare a common method of semiautomatically quantifying VD and VLD with an automated method supplied by the manufacturer of an OCTA device and report on differences in performance in order to probe for and highlight differences in values gathered by both methods.
Methods OCTA was performed using the swept source PLEX Elite 9000 device, software version 2.0.1.47652 (Carl Zeiss Meditec Inc., Dublin, CA, USA). Scans of 3 mm × 3 mm from healthy volunteers centred on the fovea were acquired by a well-trained certified ophthalmologist. Scans with a signal strength of 8 out of 10 or higher were included. Quantitative parameters of the 3 mm × 3 mm cube scans were automatically generated and segmented into superficial capillary plexus (SCP) and deep capillary plexus (DCP) layers using layer segmentation produced by the instrument software and prototype analysis VD quantification software (Macular Density v.0.7.1, ARI Network Hub, Carl Zeiss Meditec Inc., Dublin, CA, USA) supplied by the manufacturer. An alternative approach of quantitative analysis of VD and VLD was performed manually with ImageJ (National Institutes of Health, Bethesda, Maryland, USA), as previously reported. VD was assessed as the ratio of the retinal area occupied by vessels. VDL was measured as the total length of the skeletonised vessels using 1-pixel centre line extraction of the blood vessels.
Results We report differences in standard deviation (SD) in OCTA parameters obtained using different methods. The standard deviation of VD and VLD measurements was statistically significantly different in VD of 3 mm × 3 mm DCP (p = 0.009), VLD of 3 mm × 3 mm SCP (p = 0.000), and VLD of 3 mm × 3 mm DCP (p = 0.021). No statistically significant differences were found in VD of 3 mm × 3 mm SCP (p = 0.128) or VLD of 3 mm × 3 mm SCP (p = 0.107).
Conclusions As expected, we were able to demonstrate significant differences in quantitative OCTA parameters gathered from the same images using different methods of quantification. Values gathered using different methods are not interchangeable. In scientific studies and in situations where long-term follow-up is necessary, the same device and the same method of quantification should be used to maintain retrospective comparability of measurements.
Zusammenfassung
Zweck Mehrere Ansätze zur Quantifizierung von Parametern wie Vessel Density (VD) und Vessel Length Density (VLD) in der optischen Kohärenztomografieangiografie (OCTA) sind derzeit verfügbar. Es ist ebenfalls bekannt, dass Daten, die mit verschiedenen Methoden erhoben wurden, nicht direkt miteinander vergleichbar sind. Diese Studie exploriert Unterschiede der verschiedenen Methoden, um zu einem besseren Verständnis der unterschiedlichen Messmethoden zu führen. Sie vergleicht eine gängige Methode zur halbautomatischen Bestimmung von VD und VLD mit einer automatischen Methode, welche vom Hersteller eines OCTA-Geräts bereitgestellt wird und berichtet über Unterschiede der mit den beiden Methoden ermittelten Werte.
Methoden Die OCTA-Aufnahmen wurden mit dem Swept Source PLEX Elite 9000, Softwareversion 2.0.1.47652 (Carl Zeiss Meditec Inc., Dublin, CA, USA) akquiriert. Scans von 3 mm × 3 mm von gesunden Probanden, zentriert auf die Fovea, wurden von einem geschulten Ophthalmologen erstellt. Scans mit einer Signalstärke von 8 von 10 oder höher wurden eingeschlossen. Quantitative Parameter der 3 mm × 3 mm-Scans wurden automatisch für den oberflächlichen Kapillarplexus (SCP) und tiefen Kapillarplexus (DCP) erstellt. Die Segmentierung wurde durch die geräteherstellereigene Software (Macular Density v.0.7.1, ARI Network Hub, Carl Zeiss Meditec Inc., Dublin, CA, USA) vorgenommen. Diese Software generiert auch VD- und VLD-Werte für den SCP und DCP. Ein alternativer Ansatz der quantitativen Analyse von VD und VLD wurde manuell mit ImageJ (National Institutes of Health, Bethesda, Maryland, USA) durchgeführt, wie bereits in anderen Publikationen berichtet.
Ergebnisse Wir berichten über Unterschiede in der Standardabweichung (SD) der OCTA-Parameter der unterschiedlichen Methoden. Die Standardabweichung der VD- und VLD-Messungen war statistisch signifikant unterschiedlich bei der VD von 3 mm × 3 mm des DCP (p = 0,009), bei der VLD von 3 mm × 3 mm des SCP (p = 0,000) und bei der VLD von 3 mm × 3 mm des DCP (p = 0,021). Keine statistisch signifikanten Unterschiede wurden bei der VD von 3 mm × 3 mm des SCP (p = 0,128) oder bei der VLD von 3 mm × 3 mm des SCP (p = 0,107) entdeckt.
Schlussfolgerungen Wie erwartet, konnten wir signifikante Unterschiede in den quantitativen OCTA-Parametern nachweisen, die aus denselben Bildern, aber mit unterschiedlichen Quantifizierungsmethoden gewonnen wurden. Die mit verschiedenen Methoden ermittelten Werte sind nicht austauschbar. In wissenschaftlichen Studien und in Situationen, in denen langfristig wiederholt Messungen durchgeführt werden, sollte dasselbe Gerät und dieselbe Quantifizierungsmethode verwendet werden, um die retrospektive Vergleichbarkeit der Messungen zu gewährleisten.
Publication History
Received: 10 October 2021
Accepted: 06 February 2022
Article published online:
26 April 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Abràmoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Rev Biomed Eng 2010; 3: 169-208
- 2 Qin J, An L. Optical Coherence Tomography for Ophthalmology Imaging. Adv Exp Med Biol 2021; 3233: 197-216
- 3 Faatz H, Rothaus K, Ziegler M. et al. Quantitative Comparison of the Vascular Structure of Macular Neovascularizations Between Swept-Source and Spectral-Domain Optical Coherence Tomography Angiography. Clin Ophthalmol 2020; 14: 3179-3186
- 4 Zweifel SA, Wiest MRJ, Toro MD. et al. Long-Term Clinical and Multimodal Imaging Findings in Patients with Disseminated Mycobacterium Chimaera Infection. J Clin Med 2021; 10: 4178
- 5 Posarelli C, Sartini F, Casini G. et al. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. J Clin Med 2020; 9: 1682
- 6 Porta A, Tripodi S, Toro MD. et al. Bilateral Acute Macular Neuroretinopathy in a Young Patient: Imaging and Visual Field during Two-Year-Follow-Up. Diagnostics (Basel) 2020; 10: 259
- 7 Wrzesińska D, Nowomiejska K, Nowakowska D. et al. Vertical and Horizontal M-Charts and Microperimetry for Assessment of the Visual Function in Patients after Vitrectomy with ILM Peeling due to Stage 4 Macular Hole. J Ophthalmol 2019; 2019: 4975973
- 8 Longo A, Avitabile T, Uva MG. et al. Morphology of the optic nerve head in glaucomatous eyes with visual field defects in superior or inferior hemifield. Eur J Ophthalmol 2018; 28: 175-181
- 9 Longo A, Avitabile T, Uva MG. et al. Optic nerve head in central retinal vein occlusion by spectral-domain OCT. Eur J Ophthalmol 2017; 27: 485-490
- 10 Reibaldi M, Uva MG, Avitabile T. et al. Intrasession reproducibility of RNFL thickness measurements using SD-OCT in eyes with keratoconus. Ophthalmic Surg Lasers Imaging 2012; 43 (6 Suppl.): S83-S89
- 11 Brinkmann MP, Michels S, Brinkmann C. et al. Influences of central bouquet alterations on the visual outcome in eyes receiving epiretinal membrane surgery. Appl Sci 2021; 11: 926
- 12 Spaide RF, Klancnik Jr JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50
- 13 Spaide RF, Fujimoto JG, Waheed NK. et al. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64: 1-55
- 14 Bonfiglio V, Ortisi E, Scollo D. et al. Vascular changes after vitrectomy for rhegmatogenous retinal detachment: optical coherence tomography angiography study. Acta Ophthalmol 2019;
- 15 Wrzesińska D, Nowomiejska K, Nowakowska D. et al. Secondary Vitrectomy with Internal Limiting Membrane Plug due to Persistent Full-Thickness Macular Hole OCT-Angiography and Microperimetry Features: Case Series. J Ophthalmol 2020; 2020: 2650873
- 16 Carnevali A, Sacconi R, Corbelli E. et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 2017; 54: 695-702
- 17 Huang D, Jia Y, Gao SS. et al. Optical Coherence Tomography Angiography Using the Optovue Device. Dev Ophthalmol 2016; 56: 6-12
- 18 Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye (Lond) 2020; 34: 771-778
- 19 Ishii H, Shoji T, Yoshikawa Y. et al. Automated Measurement of the Foveal Avascular Zone in Swept-Source Optical Coherence Tomography Angiography Images. Transl Vis Sci Technol 2019; 8: 28
- 20 Wiest MRJ, Toro MD, Nowak A. et al. Globotrioasylsphingosine Levels and Optical Coherence Tomography Angiography in Fabry Disease Patients. J Clin Med 2021; 10: 1093
- 21 Ludbrook J. Comparing methods of measurements. Clin Exp Pharmacol Physiol 1997; 24: 193-203
- 22 Rabiolo A, Gelormini F, Sacconi R. et al. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS One 2018; 13: e0205773
- 23 Munk MR, Giannakaki-Zimmermann H, Berger L. et al. OCT-angiography: A qualitative and quantitative comparison of 4 OCT-A devices. PLoS One 2017; 12: e0177059
- 24 Corvi F, Sadda SR, Staurenghi G. et al. Thresholding strategies to measure vessel density by optical coherence tomography angiography. Can J Ophthalmol 2020; 55: 317-322
- 25 Cicinelli MV, Rabiolo A, Marchese A. et al. Choroid morphometric analysis in non-neovascular age-related macular degeneration by means of optical coherence tomography angiography. Br J Ophthalmol 2017; 101: 1193-1200
- 26 Trachsler S, Baston AE, Menke M. Intra- and Interdevice Deviation of Optical Coherence Tomography Angiography. Klin Monbl Augenheilkd 2019; 236: 551-554
- 27 Chidambara L, Gadde SGK, Yadav NK. et al. Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol 2016; 100: 1482-1488
- 28 Savastano MC, Rispoli M, Lumbroso B. et al. Fluorescein angiography versus optical coherence tomography angiography: FA vs. OCTA Italian Study. Eur J Ophthalmol 2020; 31: 514-520
- 29 Garrity ST, Sarraf D. The Arc of Change in Optical Coherence Tomographic Angiography Technology: Progression Toward Greater Reliability. JAMA Ophthalmol 2017; 135: 1098-1099
- 30 Corvi F, Pellegrini M, Erba S. et al. Reproducibility of Vessel Density, Fractal Dimension, and Foveal Avascular Zone Using 7 Different Optical Coherence Tomography Angiography Devices. Am J Ophthalmol 2018; 186: 25-31
- 31 Pedinielli A, Bonnin S. Sanharawi ME et al ·. Three Different Optical Coherence Tomography Angiography Measurement Methods for Assessing Capillary Density Changes in Diabetic Retinopathy. Ophthalmic Surg Lasers Imaging Retina 2017; 48: 378-384