Subscribe to RSS
DOI: 10.1055/a-1767-6153
Cinchona Alkaloid Catalyzed Dynamic Kinetic Resolution of Biaryl Aldehydes via Asymmetric Decarboxylative Transamination
The authors thank the National Natural Science Foundation of China (21871160, 21672121, and 22071130), the National Ten Thousand Talent Program of China, Tsinghua University, the Bayer Investigator Fellow award, and the Fellowship of Tsinghua-Peking Centre for Life Sciences (CLS) for their generous financial support
Abstract
An unprecedented Cinchona alkaloid catalyzed atropoenantioselective transamination of biaryl aldehydes with 2,2-diphenylglycine via a cascade decarboxylation and dynamic kinetic resolution strategy is described. This protocol features broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral biaryls in high yields with acceptable to good enantioselectivities. In addition, such structural motifs may have potential applications in enantioselective catalysis as chiral ligands or catalysts.
Key words
dynamic kinetic resolution - transamination - asymmetric organocatalysis - axially chiral biaryls - cinchona alkaloidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1767-6153.
- Supporting Information
- CIF File
Publication History
Received: 13 January 2022
Accepted after revision: 09 February 2022
Accepted Manuscript online:
09 February 2022
Article published online:
06 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Keller PA, Butler NM, McCosker PM. Atropisomerism and Axial Chirality . Lassaletta JM. World Scientific; New Jersey: 2019: 611
- 1b Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 1c Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
- 1d Wang J, Zhao C, Wang J. ACS Catal. 2021; 11: 12520
- 1e Zhao C, Blaszczyk SA, Wang J. Green Synth. Catal. 2021; 2: 198
- 2a Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011
- 2b Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. Coord. Chem. Rev. 2007; 251: 2119
- 2c Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 3a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 3b Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
- 4 Brunel JM. Chem. Rev. 2008; 108: 1170
- 5 Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
- 6a Ko D.-H, Kim KH, Ha D.-C. Org. Lett. 2002; 4: 3759
- 6b Kang S.-W, Ko D.-H, Kim KH, Ha D.-C. Org. Lett. 2003; 5: 4517
- 6c Bringmann G, Breuning M. Tetrahedron: Asymmetry 1998; 9: 667
- 6d Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. ACS Catal. 2021; 11: 4117
- 7 Brown KJ, Berry MS, Murdoch JR. J. Org. Chem. 1985; 50: 4345
- 8a Breslow R. Acc. Chem. Res. 1995; 28: 146
- 8b Han J, Sorochinsky AE, Ono T, Soloshonok VA. Curr. Org. Synth. 2011; 8: 281
- 8c Xie Y, Pan H, Liu M, Xiao X, Shi Y. Chem. Soc. Rev. 2015; 44: 1740
- 9a Bernauer K, Deschenaux R, Taura T. Helv. Chim. Acta 1983; 66: 2049
- 9b Deschenaux R, Bernauer K. Helv. Chim. Acta 1984; 67: 373
- 9c Hjelmencrantz A, Berg U. J. Org. Chem. 2002; 67: 3585
- 9d Knudsen KR, Bachmann S, Jørgensen KA. Chem. Commun. 2003; 2602
- 9e Xiao X, Xie Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
- 9f Xiao X, Liu M, Rong C, Xue F, Li S, Xie Y, Shi Y. Org. Lett. 2012; 14: 5270
- 9g Su C, Xie Y, Pan H, Liu M, Tian H, Shi Y. Org. Biomol. Chem. 2014; 12: 5856
- 9h Wu Y, Deng L. J. Am. Chem. Soc. 2012; 134: 14334
- 9i Liu YE, Lu Z, Li B, Tian J, Liu F, Zhao J, Hou C, Li Y, Niu L, Zhao B. J. Am. Chem. Soc. 2016; 138: 10730
- 9j Cai W, Qiao X, Zhang H, Li B, Guo J, Zhang L, Chen W.-W, Zhao B. Nat. Commun. 2021; 12: 5174
- 9k Peng Q, Yan B, Li F, Lang M, Zhang B, Guo D, Bierer D, Wang J. Commun. Chem. 2021; 4: 148
- 9l Chen W.-W, Zhao B. Synlett 2020; 31: 1543
- 9m Kang Q.-K, Selvakumar S, Maruoka K. Org. Lett. 2019; 21: 2294
- 10a Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
- 10b Caddick S, Jenkins K. Chem. Soc. Rev. 1996; 25: 447
- 10c Huerta FF, Minidis AB, Bäckvall J.-E. Chem. Soc. Rev. 2001; 30: 321
- 10d Steinreiber J, Faber K, Griengl H. Chem. Eur. J. 2008; 14: 8060
- 10e Verho O, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 3996
- 10f Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
- 11 Bringmann G, Hinrichs J, Pabst T, Henschel P, Peters K, Peters E.-M. Synthesis 2001; 155
- 12a Ashizawa T, Tanaka S, Yamada T. Org. Lett. 2008; 10: 2521
- 12b Ashizawa T, Yamada T. Chem. Lett. 2009; 38: 246
- 13 Yu C, Huang H, Li X, Zhang Y, Wang W. J. Am. Chem. Soc. 2016; 138: 6956
- 14 Chen G.-Q, Lin B.-J, Huang J.-M, Zhao L.-Y, Chen Q.-S, Jia S.-P, Yin Q, Zhang X. J. Am. Chem. Soc. 2018; 140: 8064
- 15 Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Nat. Commun. 2020; 11: 946
- 16 Mori K, Itakura T, Akiyama T. Angew. Chem. Int. Ed. 2016; 55: 11642
- 17a Zhang J, Wang J. Angew. Chem. Int. Ed. 2018; 57: 465
- 17b Guo D, Zhang J, Zhang B, Wang J. Org. Lett. 2018; 20: 6284
- 17c Zhang B, Liu L, Guo D, Wang J. ChemistrySelect 2019; 4: 1195
- 18 Li Z, Zhou H, Xu J. Org. Lett. 2021; 23: 6391
- 19 CCDC 2141486 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For recent reviews, see:
Selected examples of transamination:
For selected reviews on DKR, see: