Subscribe to RSS
DOI: 10.1055/a-1770-8592
Palladium-Catalyzed Cyanation of Arenediazonium Tetrafluoroborate Derivatives with 2-(Piperidin-1-yl)acetonitrile as the Cyano Source
Jinan University

Abstract
The present study describes the one-pot palladium-catalyzed cyanation of commercially available aryldiazonium tetrafluoroborate derivatives with 2-(piperidin-1-yl)acetonitrile (an organic cyano reagent) under mild conditions. This process utilizes a Pd/(Me3Si)2 system and is applied to a wide scope of aromatic diazonium substrates to give the corresponding nitrile-containing products in moderate to high yields (59–92%). This methodology is employed for the preparation of etravirine, a drug used for the treatment of HIV, and for transformations of 1H-indole-2-carbonitrile into compounds that are used as a NMDA receptor antagonists and that have high potential against mutant HIV strains. The mechanism proposed for this Pd-catalyzed cyanation involves cyanide ions, as confirmed using indicator paper.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1770-8592.
- Supporting Information
Publication History
Received: 30 December 2021
Accepted after revision: 14 February 2022
Accepted Manuscript online:
14 February 2022
Article published online:
25 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kleemann A, Engel J, Kutschner B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
- 1b Review: Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
- 1c Ahmad MS, Pulidindi IN, Li C. New J. Chem. 2020; 44: 17177
- 1d Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 2a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
- 2b Kochi JK. J. Am. Chem. Soc. 1957; 79: 2942
- 2c Lindley J. Tetrahedron 1984; 40: 1433
- 2d Review: Hodgson HH. Chem. Rev. 1947; 40: 251
- 2e Barbero M, Cadamuro S, Dughera S. Org. Biomol. Chem. 2016; 14: 1437
- 3a Cassar L. J. Organomet. Chem. 1973; 54: C57
- 3b Cassar L, Ferrara S, Foá M. Adv. Chem. Ser. 1974; 132: 252
- 3c Cassar L, Foá M, Montanari F, Marinelli GP. J. Organomet. Chem. 1979; 173: 335
- 3d Okano T, Iwahara M, Kiji J. Synlett 1998; 243
- 3e Dalton JR, Regen SL. J. Org. Chem. 1979; 44: 4443
- 3f Zanon J, Klarpars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
- 3g Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
- 4a Takagi K, Okamoto T, Sakakibara Y, Oka S. Chem. Lett. 1973; 471
- 4b Akita Y, Shimazaki M, Ohta A. Synthesis 1981; 974
- 4c Sakakibara Y, Okuda F, Shimobayashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
- 4d Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
- 4e Sundermeier M, Zapf A, Beller M, Sans J. Tetrahedron Lett. 2001; 42: 6707
- 4f Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem. Eur. J. 2003; 9: 1828
- 4g Yang C, Williams JM. Org. Lett. 2004; 6: 2837
- 4h Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
- 5a Tschaen DM, Desmond R, King AO, Fortin MC, Pipik B, King S, Verhoeven TR. Synth. Commun. 1994; 24: 887
- 5b Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
- 5c Alterman M, Hallberg A. J. Org. Chem. 2000; 65: 7984
- 5d Jin F, Confalone PN. Tetrahedron Lett. 2000; 41: 3271
- 5e Ramnauth J, Bhardwaj N, Renton P, Rakhit S, Maddaford SP. Synlett 2003; 2237
- 5f Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
- 5g Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F. Tetrahedron Lett. 2005; 46: 8645
- 5h Veauthier JM, Carson CN, Collis GE, Kiplinger JL, John KD. Synthesis 2005; 2683
- 5i Martin MT, Liu B, Cooley BE. Jr, Eaddy JF. Tetrahedron Lett. 2007; 48: 2555
- 5j Littke A, Soumeillant M, Kaltenbach RF, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
- 5k Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
- 5l Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
- 5m Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
- 6a Chatani N, Hanafusa T. J. Org. Chem. 1986; 51: 4714
- 6b Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M. J. Organomet. Chem. 2003; 684: 50
- 7a Review: Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
- 7b Gong TJ, Xiao B, Cheng WM, Su W, Xu J, Liu ZJ, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
- 7c Yang Y, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 8677
- 7d Wang L, Wang Y, Shen J, Chen Q, He M.-Y. Org. Biomol. Chem. 2018; 16: 4816
- 7e Zhang T, Qiao J, Song H, Xu F, Liu X, Xu C, Ma J, Liu H, Sun Z, Chu W. New J. Chem. 2019; 43: 9084
- 7f Iizumi K, Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. Synlett 2021; 1555
- 8a Najera C, Sansano JM. Angew. Chem. Int. Ed. 2009; 48: 2452
- 8b Kou X, Fan J, Tong X, Shen Z. Chin. J. Org. Chem. 2013; 33: 1407
- 9a Bollini M, Cisneros JA, Spasov KA, Anderson KS, Jorgenson WL. Bioorg. Med. Chem. Lett. 2013; 23: 5213
- 9b Joshi S, Maikap GC, Titirmare S, Chaudhari A, Gurjar MK. Org. Process Res. Dev. 2010; 14: 657
- 10 Fier PS, Hartwig JF. J. Am. Chem. Soc. 2014; 28: 10139
- 11a Borza I, Kolok S, Ignácz-Szendrei G, Greiner I, Tárkányi G, Galgóczy K, Horváth C, Farkas S, Domány G. Bioorg. Med. Chem. Lett. 2005; 15: 5439
- 11b Woodroofe CC, Meisenheimer PL, Klaubert DH, Kovic Y, Rosenberg JC, Behney CE, Southworth TL, Branchini BR. Biochemistry 2012; 51: 9807
- 11c Kou X, Zhao M, Qiao X, Zhu Y, Tong X, Shen Z. Chem. Eur. J. 2013; 19: 16880
- 12a Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
- 12b Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
- 13 Zhu Y, Zhou M, Luo W, Li L, Shen Z. Org. Lett. 2015; 17: 2602
- 14a Xu W, Xu Q, Li J. Org. Chem. Front. 2015; 2: 231
- 14b Zhang G, Zhang L, Hu M, Cheng J. Adv. Synth. Catal. 2011; 353: 291
- 14c Isobe T, Ishikawa T. J. Org. Chem. 1999; 64: 6984
- 14d Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. RSC Adv. 2017; 7: 1484
- 14e O’Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E, Leemans E, Boudreau MA, Yamaguchi T, Schroeder VA, Wolter WR, Llarrull LI, Song W, Lastochkin E, Kumarasiri M, Antunes NT, Espahbodi M, Lichtenwalter K, Suckow MA, Vakulenko S, Mobashery S, Chang M. J. Am. Chem. Soc. 2014; 136: 3664
- 14f Liu Y.-Y, Liang D, Lu L.-Q, Xiao W.-J. Chem. Commun. 2019; 55: 4853
- 14g Kawagoe Y, Moriyama K, Togo H. Eur. J. Org. Chem. 2014; 19: 4115
- 14h Nicolaou KC, Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992
- 14i Mudshinge SR, Potnis CS, Xu B, Hammond GB. Green Chem. 2020; 22: 4161
- 14j Prabhu RN, Ramesh R. Tetrahedron Lett. 2017; 58: 405
- 14k Shimojo H, Moriyama K, Togo H. Synthesis 2013; 45: 2155
- 14l Reiner JE, Siev DV, Araldi G.-L, Cui JJ, Ho JZ, Komandla M, Mamedova L, Nolan TG, Semple JE. Bioorg. Med. Chem. Lett. 2002; 12: 1203
- 14m Choi S, Park C.-M, Park J, Sim J, Yu E. Angew. Chem. Int. Ed. 2020; 59: 11886
- 14n Wang Y, Huang W, Xin M, Chen P, Gui L, Zhao X, Wang J, Liu J. Bioorg. Med. Chem. 2017; 25: 75
- 14o Zhou S, Junge K, Addis D, Das S, Beller M. Org. Lett. 2009; 11: 2461
For examples, see:
For selected examples of NaCN as a CN source, see:
For selected examples of KCN as a CN source, see:
For selected examples of Zn(CN)2 as a CN source, see:
For selected examples of Me3SiCN as a CN source, see:
For examples using ‘non-metallic’ CN sources, see:
For recent reviews on C–CN cleavage, see:
For indicator strategies, see: