Zeitschrift für Phytotherapie 2022; 42(05): 209-213
DOI: 10.1055/a-1773-4108
Forschung

Update zur Mundgesundheit mit Zubereitungen aus Preiselbeeren

Oral health care with preparations of Vaccinium species. An update
Julia Vlachojannis
1   Institut für Rechtsmedizin der Universität Freiburg
,
Sigrun Chrubasik-Hausmann
1   Institut für Rechtsmedizin der Universität Freiburg
› Author Affiliations

Zusammenfassung

Die verschiedenen Vaccinium-Arten unterscheiden sich im Spektrum ihrer Inhaltsstoffe. Die skandinavische Preiselbeere (V. vitis-idaea) enthält mehr Wirkstoff als die amerikanische Preiselbeere (V. macrocarpon), früher auch Großfrüchtige Moosbeere, Kraanbeere oder Kranichbeere, heute eher Cranberry genannt. Dennoch besitzen auch Fraktionen aus der amerikanischen Cranberry eine starke Wirkung gegen Karies und Periodontitis. Der Wirkungsmechanismus ist weitgehend aufgeklärt. Die vorhandenen In-vitro-Daten erlauben derzeit noch keine Abgrenzung zwischen den Vaccinium-Arten, da nur wenige In-vitro-Studien mit V. vitis-idaea durchgeführt wurden. Pilotstudien weisen darauf hin, dass der Wirkstoff beider Vaccinium-Arten zur Förderung der Mundgesundheit genutzt werden kann. Weitere Studien müssen jetzt die Wirkgrößen definieren und den Unterschied zwischen den Vaccinium-Arten bei der Mundgesundheit evaluieren.

Abstract

Vaccinium species differ in their active principle. The Scandinavian berries (V. vitis-idaea) have a higher content of active principle than the American berries (V. macrocarpon), named Großfrüchtige Moosbeere, Kraanbeere or Kranichbeere, today rather Cranberry. However, fractions from Cranberry also have a potent effect against caries and periodontitis. The mechanism of action is almost identified. In-vitro data are insufficient to allow to differentiate between the effects of the Vaccinium species. Clinical pilot data indicate that the active principle of both Vaccinium species can be used to promote oral health. Further clinical studies are now required to evaluate the difference between the Vaccinium species.



Publication History

Article published online:
24 October 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bodet C, Piché M, Chandad F, Grenier D. Inhibition of periodontopathogen-derived proteolytic enzymes by a high-molecular-weight fraction isolated from cranberry. J Antimicrob Chemother 2006; 57: 685-690
  • 2 Bodet C, Chandad F, Grenier D. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J Dent Res 2006; 85: 235-239
  • 3 Bodet C, Chandad F, Grenier D. Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts. Eur J Oral Sci 2007; 115: 64-70
  • 4 Bodet C, Chandad F, Grenier D. Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. J Periodontal Res 2007; 42: 159-168
  • 5 Brown PN, Turi CE, Shipley PR, Murch SJ. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med 2012; 78: 630-640
  • 6 Burger O, Weiss E, Sharon N. et al. Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice. Crit Rev Food Sci Nutr 2002; 42: 279-284
  • 7 Cásedas G, Les F, Gómez-Serranillos MP. et al. Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: a comparative study. Food Funct 2017; 8: 4187-4193
  • 8 Cesonienė L, Daubaras R, Jasutienė I. et al. Evaluation of the biochemical components and chromatic properties of the juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Plant Foods Hum Nutr 2011; 66: 238-244
  • 9 Di Martino P, Agniel R, Gaillard JL, Denys P. Effects of cranberry juice on uropathogenic Escherichia coli in vitro biofilm formation. J Chemother 2005; 17: 563-565
  • 10 Duarte S, Gregoire S, Singh AP. et al. Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett 2006; 257: 50-56
  • 11 Feldman M, Weiss E, Shemesh M. et al. Cranberry constituents affect fructosyltransferase expression in Streptococcus mutans . Altern Ther Health Med 2009; 15: 32-38
  • 12 Feng G, Klein MI, Gregoire S. et al. The specific degree-of-polymerization of A-type proanthocyanidin oligomers impacts Streptococcus mutans glucan-mediated adhesion and transcriptome responses within biofilms. Biofouling 2013; 29: 629-640
  • 13 Gregoire S, Singh AP, Vorsa N, Koo H. Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 2007; 103: 1960-1968
  • 14 Gupta A, Bansal K, Marwaha M. Effect of high-molecular-weight component of cranberry on plaque and salivary Streptococcus mutans counts in children: an in vivo study. J Indian Soc Pedod Prev Dent 2015; 33: 128-133
  • 15 Ho KY, Huang JS, Tsai CC. et al. Antioxidant activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol 1999; 51: 1075-1078
  • 16 Ho KY, Tsai CC, Huang JS. et al. Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. J Pharm Pharmacol 2001; 53: 187-191
  • 17 Howell AB, Botto H, Combescure C. et al. Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study. BMC Infect Dis 2010; 10: 94
  • 18 Hurkova K, Uttl L, Rubert J. et al. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem 2019; 284: 162-170
  • 19 Jungfer E, Zimmermann BF, Ruttkat A, Galensa R. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects. J Agric Food Chem 2012; 60: 9688-9696
  • 20 Kim D, Hwang G, Liu Y. et al. Cranberry flavonoids modulate cariogenic properties of mixed-species biofilm through exopolysaccharides-matrix disruption. PLoS One 2015; 10: e0145844
  • 21 Kokubu E, Kinoshita E, Ishihara K. Inhibitory effects of lingonberry extract on oral streptococcal biofilm formation and bioactivity. Bull Tokyo Dent Coll 2019; 60: 1-9
  • 22 Koo H, Nino de Guzman P, Schobel BD. et al. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res 2006; 40: 20-27
  • 23 Koo H, Duarte S, Murata RM, Scott-Anne K. et al. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 2010; 44: 116-126
  • 24 Kowalska K. Lingonberry (Vaccinium vitis-idaea L.) fruit as a source of bioactive compounds with health-promoting effects – A review. Int J Mol Sci 2021; 22: 5126
  • 25 Kumar V, Ankola AV, Sankeshwari R. et al. Assessment of the antimicrobial efficacy of hydroalcoholic fruit extract of cranberry against Socransky complexes and predominant cariogenic, mycotic and endodontic climax communities of the oral cavity: An extensive in-vitro study. J Oral Maxillofac Pathol 2019; 23: 407-411
  • 26 Kylli P, Nohynek L, Puupponen-Pimiä R. et al. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: isolation, identification, and bioactivities. J Agric Food Chem 2011; 59: 3373-3384
  • 27 La VD, Labrecque J, Grenier D. Cytoprotective effect of proanthocyanidin-rich cranberry fraction against bacterial cell wall-mediated toxicity in macrophages and epithelial cells. Phytother Res 2009; 23: 1449-1452
  • 28 Labrecque J, Bodet C, Chandad F, Grenier D. Effects of a high-molecular-weight cranberry fraction on growth, biofilm formation and adherence of Porphyromonas gingivalis . J Antimicrob Chemother 2006; 58: 439-443
  • 29 Lätti AK, Riihinen KR, Jaakola L. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium×intermedium Ruthe). Phytochemistry 2011; 72: 810-815
  • 30 Leshem R, Maharshak I, Jacob EB. et al. The effect of nondialyzable material (NDM) cranberry extract on formation of contact lens biofilm by Staphylococcus epidermidis . Invest Ophthalmol Vis Sci 2011; 52: 4929-4934
  • 31 Matheu V, Baeza ML, Zubeldia JM, Barrios Y. Allergy to lingonberry: A case report. Clin Mol Allergy 2004; 2: 2
  • 32 Narwojsz A, Tańska M, Mazur B, Borowska EJ. Fruit physical features, phenolic compounds profile and inhibition activities of cranberry cultivars (Vaccinium macrocarpon) compared to wild-grown cranberry (Vaccinium oxycoccus). Plant Foods Hum Nutr 2019; 74: 300-306
  • 33 Neto CC, Penndorf KA, Feldman M. et al. Characterization of non-dialyzable constituents from cranberry juice that inhibit adhesion, co-aggregation and biofilm formation by oral bacteria. Food Funct 2017; 8: 1955-1965
  • 34 Pärnänen P, Nikula-Ijäs P, Sorsa T. Antimicrobial and anti-inflammatory lingonberry mouthwash – A clinical pilot study in the oral cavity. Microorganisms 2019; 7: 331
  • 35 Pärnänen P, Lähteenmäki H, Tervahartiala T. et al. Lingonberries – general and oral effects on the microbiome and inflammation. Nutrients 2021; 13: 3738
  • 36 Pappas E, Schaich KM. Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Crit Rev Food Sci Nutr 2009; 49: 741-781
  • 37 Pellerin G, Bazinet L, Grenier D. Deacidification of cranberry juice reduces its antibacterial properties against oral streptococci but preserves barrier function and attenuates the inflammatory response of oral epithelial cells. Foods 2021; 10: 1634
  • 38 Philip N, Bandara HMHN, Leishman SJ, Walsh LJ. Effect of polyphenol-rich cranberry extracts on cariogenic biofilm properties and microbial composition of polymicrobial biofilms. Arch Oral Bio 2019; 102: 1-6
  • 39 Philip N, Leishman SJ, Bandara H, Walsh LJ. Polyphenol-rich cranberry extracts modulate virulence of Streptococcus mutans-Candida albicans biofilms implicated in the pathogenesis of early childhood caries. Pediatr Dent 2019; 41: 56-62
  • 40 Sethi R, Govila V. Inhibitory effect of cranberry juice on the colonization of Streptococci species: An in vitro study. J Indian Soc Periodontol 2011; 15: 46-50
  • 41 Shmuely H, Burger O, Neeman I. et al. Susceptibility of Helicobacter pylori isolates to the antiadhesion activity of a high-molecular-weight constituent of cranberry. Diagn Microbiol Infect Dis 2004; 50: 231-235
  • 42 Steinberg D, Feldman M, Ofek I, Weiss EI. Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother 2004; 54: 86-89
  • 43 Tao Y, Pinzón-Arango PA, Howell AB, Camesano TA. Oral consumption of cranberry juice cocktail inhibits molecular-scale adhesion of clinical uropathogenic Escherichia coli . J Med Food 2011; 14: 739-745
  • 44 Vilkickyte G, Raudone L, Petrikaite V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants (Basel) 2020; 9: 1261
  • 45 Vinson JA, Bose P, Proch J. et al. Cranberries and cranberry products: powerful in vitro, ex vivo, and in vivo sources of antioxidants. J Agric Food Chem 2008; 56: 5884-5891
  • 46 Weiss EL, Lev-Dor R, Sharon N, Ofek I. Inhibitory effect of a high-molecular-weight constituent of cranberry on adhesion of oral bacteria. Crit Rev Food Sci Nutr 2002; 42: 285-292
  • 47 Weiss EI, Kozlovsky A, Steinberg D. et al. A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiol Lett 2004; 232: 89-92
  • 48 Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol 2004; 19: 150-154
  • 49 Yamanaka A, Kouchi T, Kasai K. et al. Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis . J Periodontal Res 2007; 42: 589-592
  • 50 Yamanaka-Okada A, Sato E, Kouchi T. et al. Inhibitory effect of cranberry polyphenol on cariogenic bacteria. Bull Tokyo Dent Coll 2008; 49: 107-112
  • 51 Zorzi M, Gai F, Medana C. et al. Identification of polyphenolic compounds in edible wild fruits grown in the north-west of Italy by means of HPLC-DAD-ESI HRMS. Plant Foods Hum Nutr 2020; 75: 420-426