RSS-Feed abonnieren
DOI: 10.1055/a-1775-2910
Selenium Radical-Triggered Spiro-Tricyclization of N-Aryl-N-(2-hydroxyethyl)propiolamides
Financial supports from the Natural Science Foundation of Zhejiang Province (Nos. LY22B020010) and the Natural Science Foundation of China (Nos. 21772067, 21801096, and 22161043) are gratefully acknowledged.

Abstract
A blue LED-promoted dearomative oxo-spirocyclization of N-aryl-N-(2-hydroxyethyl)propiolamides is developed. The reaction works well to provide a series of selenium-containing benzo[b]pyrrolo[2,1-c][1,4]oxazine-3,9-diones with high efficiency and good tolerance for functional groups. Besides, diselenium-containing benzo[b]pyrrolo[2,1-c][1,4]oxazine-3,9-diones can also be efficiently synthesized in the presence of Oxone. In this process, it is believed that a selenium radical-triggered ipso-cyclization and oxo-Michael addition are involved. Further applications using the prepared products in bioactivity assay is currently underway.
Key words
selenium radical - dearomative oxo-spirocyclization - propiolamides - ipso-cyclization - α-additionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1775-2910.
- Supporting Information
Publikationsverlauf
Eingereicht: 26. Januar 2022
Angenommen nach Revision: 17. Februar 2022
Accepted Manuscript online:
17. Februar 2022
Artikel online veröffentlicht:
02. Mai 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Peterson EA, Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11943
- 1b Wang B, Tu Y.-Q. Acc. Chem. Res. 2011; 44: 1207
- 1c Song Z.-L, Fan C.-A, Tu Y.-Q. Chem. Rev. 2011; 111: 7523
- 2a Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
- 2b Dohi T, Nakae T, Ishikado Y, Kato D, Kita Y. Org. Biomol. Chem. 2011; 9: 6899
- 2c Yugandhar D, Kuriakose S, Nanubolu JB, Srivastava AK. Org. Lett. 2016; 18: 1040
- 2d Zhang Y, Zhang X, Zhang Y, Ruan L, Zhang-Negrerie D, Du Y. Org. Lett. 2017; 19: 150
- 2e Tang B.-X, Zhang Y.-H, Song R.-J, Tang D.-J, Deng G.-B, Wang Z.-Q, Xie Y.-X, Xia Y.-Z, Li J.-H. J. Org. Chem. 2012; 77: 2837
- 2f Pouysegu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
- 2g Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
- 2h Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 2i Duan Y, Jiang S, Han Y, Sun B, Zhang C. Chin. J. Org. Chem. 2016; 36: 1973 ; (in Chinese)
- 2j Nechaev AA, Hecke KV, Zaman M, Kashtanov S, Ungur L, Pereshivko OP, Peshkov VA, Van de Eycken EV. J. Org. Chem. 2018; 83: 8170
- 2k Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213
- 2l Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582
- 2m Yu Q.-F, Zhang Y.-H, Yin Q, Tang B.-X, Tang R.-Y, Zhong P, Li J.-H. J. Org. Chem. 2008; 73: 3658
- 3 Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Rev. 2014; 47: 2558
- 4 Leon R, Jawalekar A, Redert T, Gaunt MJ. Chem. Sci. 2011; 2: 1487
- 5a Song R, Xie Y. Chin. J. Chem. 2017; 35: 280
- 5b Shi L, Zhang W, Chen S, Lu L, Fan R, Tan J, Zheng C. Curr. Org. Chem. 2018; 15: 904
- 5c Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
- 5d Ni S, Zhou J, Mei H, Han J. Tetrahedron Lett. 2018; 59: 1309
- 6a Vessally E, Babazadeh M, Didehban K, Hosseinian A, Edjlali L. Curr. Org. Chem. 2018; 22: 286
- 6b He Y, Li Z, Tian G, Song L, Van M ML, Van der Eycken EV. Chem. Commun. 2017; 53: 6413
- 6c Wu L.-J, Tan F.-L, Li M, Song R.-J, Li J.-H. Org. Chem. Front. 2017; 4: 350
- 6d Reddy CR, Yarlagadda S, Ramesh B, Reddy MR, Sridhar B, Reddy BV. S. Eur. J. Org. Chem. 2017; 2332
- 6e Gao P, Zhang W, Zhang Z. Org. Lett. 2016; 18: 5820
- 6f Liu Y, Wang Q.-L, Xiong B.-Q, Zhang P.-L, Yang C.-A, Gong Y.-X, Liang J, Zhou Q. Synlett 2018; 29: 2396
- 6g Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-A, Tan K.-W. J. Org. Chem. 2018; 83: 2210
- 6h Bansode AH, Shaikh SR, Rajesh RG, Patil NT. Chem. Commun. 2017; 53: 9081
- 6i Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
- 6j Ni S, Cao J, Mei H, Han J, Li S, Pan Y. Green Chem. 2016; 18: 3935
- 6k Zhou K, Huang J, Wu J, Qiu G. Chin. Chem. Lett. 2021; 32: 37
- 7a Liang Z, Lin Y.-C, Pierce JG. Org. Lett. 2021; 23: 9559
- 7b Floretino L, Lopez L, Barroso R, Cabal M.-P, Valdes C. Angew. Chem. Int. Ed. 2021; 60: 1273
- 7c Kweon J, Chang S. Angew. Chem. Int. Ed. 2021; 60: 2909
- 8a Wang C.-S, Roisnei T, Dixneuf PH, Soule J.-F. Adv. Synth. Catal. 2019; 361: 445
- 8b Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212
- 9a Liu G, Lancefield CS, Lorion MM, Slawin AM. Z, Westwood NJ. Synthesis 2014; 46: 2808
- 9b Nicolaou KC, Zhong Y.-L, Baran PS, Jung J, Choi H.-S, Yoon WH. J. Am. Chem. Soc. 2002; 124: 2202
- 9c Nicolaou KC, Baran PS, Zhong Y.-L, Sugita K. J. Am. Chem. Soc. 2002; 124: 2212
- 9d Parsons AF, Wiliams DA. J. Tetrahedron 2000; 56: 7217
- 10a Zhang L, Ma L, Zhou H, Yao J, Li X, Qiu G. Org. Lett. 2018; 20: 2407
- 10b He Y, Qiu G. Org. Biomol. Chem. 2017; 15: 3485
- 10c Ren SF, Wang Y.-C, Liu J.-B, Qiu G. Chin. J. Org. Chem. 2021; 41: 3652
- 10d Wang Y.-C, Huang K.-K, Lai X, Shi Z, Liu J.-B, Qiu G. Org. Biomol. Chem. 2021; 19: 1940
- 10e Wang Y.-C, Liu J.-B, Qiu G, Yang Y, Zhou H. Chin. J. Org. Chem. 2021; 41: 4798
- 10f Shan Y, Su L, Chen D, Yang M, Xie W, Qiu G. Chin. Chem. Lett. 2021; 32: 437
- 11 Wang Y.-C, Liu J.-B, Zhou HW, Xie W, Rojsitthisak P, Qiu G. J. Org. Chem. 2020; 85: 1906
- 12a Chen P, Xie J, Chen Z, Xiong B.-Q, Liu Y, Yang C.-A, Tang K.-W. Adv. Synth. Catal. 2021; 363: 4440
- 12b Ouchi S, Koshikawa T, Nagashima Y, Tanaka K. Org. Lett. 2021; 23: 1934
- 12c Raji Reddy C, Ajaykumar U, Kolgave DH. J. Org. Chem. 2020; 85: 1552
- 12d Grams RJ, Garcia C, Szwetkowski C, Santos WL. Org. Lett. 2020; 22: 7013
- 13 For selected examples, see: Mo K, Zhou X, Wu J, Zhao Y. Chem. Commun. 2022; 58: 1306
- 14a Sathesh V, Sathiyanarayanan K. Synlett 2017; 28: 1331
- 14b Yang X, Pang S, Cheng F, Zhang Y, Lin Y.-W, Yuan Q, Zhang F.-L, Huang Y.-Y. J. Org. Chem. 2017; 82: 10388
- 14c Liu H, Yang Y, Wang S, Wu J, Wang X.-N, Chang J.-B. Org. Lett. 2015; 17: 4472
- 15a Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
- 15b Lapcinska S, Arsenyan P. New J. Chem. 2021; 45: 16625
- 15c Wu Z-L, Chen J-Y, Tian X-Z, Yang W-T, Zhang Z-T, He W-M. Chin. Chem. Lett. 2021; 8: 71
- 15d Chen J.-Y, Wu H.-Y, Gui Q.-W, Yan S.-S, Deng J, Lin Y.-W, Cao Z, He W.-M. Chin. J. Catal. 2021; 42: 1445
- 15e Wu Y, Chen J.-Y, Ning J, Jiang X, Deng J, Deng Y, Xu R, He W.-M. Green Chem. 2021; 23: 3950
- 15f Chen J.-Y, Zhong C.-T, Gui Q.-W, Zhou Y.-M, Fang Y.-Y, Liu K.-J, Lin Y.-W, Cao Z, He W.-M. Chin. Chem. Lett. 2021; 32: 475
For selected reviews, see:
For selected examples on electrophilic ipso-cyclization, see:
For reviews, see:
For selected reviews on radical ipso-cyclization, see:
For a review, see:
For selected examples on radical ipso-cyclization with/without metal catalysis, see:
For recent examples, see:
For selected examples, see:
For examples from our group, see:
For selected examples, see: