Subscribe to RSS
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.1055/a-1782-4224
Acrylamide-Based Pd-Nanoparticle Carriers as Smart Catalysts for the Suzuki–Miyaura Cross-Coupling of Amino Acids
We acknowledge financial support from Deutsche Forschungsgemeinschaft (SE 609/16-1).
![](https://www.thieme-connect.de/media/synthesis/202214/lookinside/thumbnails/ss-2021-z0732-fa-oa_10-1055_a-1782-4224-1.jpg)
Abstract
Polyacrylamide-based waterborne microgels were prepared with copolymerized carboxylic acid and tertiary amine moieties. The colloidal gels were loaded with palladium nanoparticles and utilized for the Suzuki–Miyaura cross-coupling of amino acids and peptides. The thermoresponsive properties of the prepared microgels were characterized by means of photon correlation spectroscopy (PCS) at solvent conditions of the catalytic reaction. The localization and morphology of the incorporated nanoparticles were characterized with transmission electron microscopy (TEM). Palladium-catalyzed Suzuki–Miyaura cross-coupling of N α-Boc-4-iodophenylalanine and N α-Boc-7-bromotryptophan with phenylboronic acid was carried out under ambient atmosphere in water at 20, 37, and 60 °C, respectively. The properties of the thermoresponsive microgel showed a strong influence on the reactivity and selectivity towards the respective substrate. For the amine containing microgels, a recyclability for up to four cycles without loss in activity could be realized. Furthermore, the systems showed good catalytic activity regarding Suzuki–Miyaura cross-coupling of halogenated amino acids in selected tri- and tetrapeptides.
Key words
palladium catalysis - bioorganic chemistry - cross-coupling - amino acids - nanoparticles - polyacrylamide microgel - halogenated peptide - polymersSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1782-4224.
- Supporting Information
Publication History
Received: 02 December 2021
Accepted after revision: 16 February 2022
Accepted Manuscript online:
25 February 2022
Article published online:
20 April 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 1b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 1c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2a Willemse T, Schepens W, Vlijmen H, Maes B, Ballet S. Catalysts 2017; 7: 74
- 2b Gruß H, Sewald N. Chem. Eur. J. 2020; 26: 5328
- 3 Dachwitz S, Duwe DH, Wang YH, Gruß H, Hannappel Y, Hellweg T, Sewald N. Chem. Eur. J. 2020; 26: 16357
- 4 Chalker JM, Wood CS. C, Davis BG. J. Am. Chem. Soc. 2009; 131: 16346
- 5 Roy AD, Goss RJ. M, Wagner GK, Winn M. Chem. Commun. 2008; 4831
- 6 Willemse T, Van Imp K, Goss RJ. M, Van Vlijmen HW. T, Schepens W, Maes BU. W, Ballet S. ChemCatChem 2015; 7: 2055
- 7a Frese M, Schnepel C, Minges H, Voß H, Feiner R, Sewald N. ChemCatChem 2016; 8: 1799
- 7b Latham J, Henry J.-M, Sharif HH, Menon BR. K, Shepherd SA, Greaney MF, Micklefield J. Nat. Commun. 2016; 7: 11873
- 8 Schnepel C, Minges H, Frese M, Sewald N. Angew. Chem. Int. Ed. 2016; 55: 14159
- 9 Sharma SV, Tong X, Pubill-Ulldemolins C, Cartmell C, Bogosyan EJ. A, Rackham EJ, Marelli E, Hamed RB, Goss RJ. M. Nat. Commun. 2017; 8: 229
- 10a Kemker I, Schnepel C, Schröder DC, Marion A, Sewald N. J. Med. Chem. 2019; 62: 7417
- 10b Kemker I, Feiner RC, Müller KM, Sewald N. ChemBioChem 2020; 21: 496
- 11 Liu C, Li X. Chem. Rec. 2016; 16: 84
- 12 Dumas A, Peramo A, Desmaële D, Couvreur P. Chimia 2016; 70: 252
- 13 Peramo A, Abdellah I, Pecnard S, Mougin J, Martini C, Couvreur P, Huc V, Desmaële D. Molecules 2020; 25: 1459
- 14 Seto H, Morii T, Yoneda T, Murakami T, Hoshino Y, Miura Y. Chem. Lett. 2013; 42: 301
- 15 Pelton RH, Chibante P. Colloids Surf. 1986; 20: 247
- 16 Saunders BR, Vincent B. Adv. Colloid Interface Sci. 1999; 80: 1
- 17a Hoare T, Pelton R. Langmuir 2008; 24: 1005
- 17b Dirksen M, Kinder TA, Brändel T, Hellweg T. Molecules 2021; 26: 3181
- 18a Zhang QM, Xu W, Serpe MJ. Angew. Chem. Int. Ed. 2014; 53: 4827
- 18b Sorrell CD, Carter MC. D, Serpe MJ. Adv. Funct. Mater. 2011; 21: 425
- 19a Kleinschmidt D, Fernandes MS, Mork M, Meyer AA, Krischel J, Anakhov MV, Gumerov RA, Potemkin II, Rueping M, Pich A. J. Colloid Interface Sci. 2020; 559: 76
- 19b Kleinschmidt D, Nothdurft K, Anakhov MV, Meyer AA, Mork M, Gumerov RA, Potemkin II, Richtering W, Pich A. Mater. Adv. 2020; 1: 2983
- 20a Begum R, Farooqi ZH, Xiao J, Ahmed E, Sharif A, Irfan A. J. Mol. Liq. 2021; 338: 116780
- 20b Besold D, Risse S, Lu Y, Dzubiella J, Ballauff M. Ind. Eng. Chem. Res. 2021; 60: 3922
- 20c Roa R, Angioletti-Uberti S, Lu Y, Dzubiella J, Piazza F, Ballauff M. Z. Phys. Chem. 2018; 232: 773
- 20d Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M. Chem. Mater. 2007; 19: 1062
- 20e Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M. J. Mater. Chem. 2009; 19: 3955
- 21 Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 2229
- 22 Angioletti-Uberti S, Lu Y, Ballauff M, Dzubiella J. J. Phys. Chem. C 2015; 119: 15723
- 24 Sabadasch V, Wiehemeier L, Kottke T, Hellweg T. Soft Matter 2020; 16: 5422
- 25 Brändel T, Sabadasch V, Hannappel Y, Hellweg T. ACS Omega 2019; 4: 4636
- 26 Hoare T, McLean D. J. Phys. Chem. B 2006; 110: 20327
- 27 Pelton R. Adv. Colloid Interface Sci. 2000; 85: 1
- 28 Kroschwitz JI, Kirk RE, Othmer DF, Seidel A. Kirk-Othmer Encyclopedia of Chemical Technology . Wiley-Interscience; Hoboken: 2004
- 29 Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. J. Am. Chem. Soc. 2012; 134: 18177
- 30a Hoare T, Pelton R. Curr. Opin. Colloid Interface Sci. 2008; 13: 413
- 30b Kleinen J, Richtering W. Colloid Polym. Sci. 2011; 289: 739
- 31 Friesen S, Hannappel Y, Kakorin S, Hellweg T. Gels 2021; 7: 42
- 32a Kratz K, Hellweg T, Eimer W. Colloids Surf., A 2000; 170: 137
- 32b Karanastasis AA, Kenath GS, Andersen D, Fokas D, Ryu CY, Ullal CK. J. Colloid Interface Sci. 2020; 568: 264
- 33 Wrede O, Reimann Y, Lülsdorf S, Emmrich D, Schneider K, Schmid AJ, Zauser D, Hannappel Y, Beyer A, Schweins R, Gölzhäuser A, Hellweg T, Sottmann T. Sci. Rep. 2018; 13781
- 34a Gelissen AP. H, Scotti A, Turnhoff SK, Janssen C, Radulescu A, Pich A, Rudov AA, Potemkin II, Richtering W. Soft Matter 2018; 14: 4287
- 34b Annegarn M, Dirksen M, Hellweg T. Polymers 2021; 13: 827
- 35 Mourran A, Wu Y, Gumerov RA, Rudov AA, Potemkin II, Pich A, Möller M. Langmuir 2016; 32: 723
- 36 Hirano T, Nakamura K, Kamikubo T, Ishii S, Tani K, Mori T, Sato T. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 4575
- 37 Rasband WS. ImageJ, version 1.52a 2021 . U. S. National Institutes of Health; Bethesda: 2021. https://imagej.nih.gov/ij/ (accessed April 3, 2022)
- 38 Frisken BJ. Appl. Opt. 2001; 40: 4087