Subscribe to RSS
DOI: 10.1055/a-1791-7218
Rhodium-Catalyzed C–H Activation of Indoles for the Construction of Spiroindole Scaffolds
We gratefully acknowledge the Shanghai Institute of Materia Medica; the Chinese Academy of Sciences; the National Natural Science Foundation of China (22001258 and 21920102003); the Youth Innovation Promotion Association CAS (nos. 2014229 and 2018293); Institutes for Drug Discovery and Development, the Chinese Academy of Sciences (no. CASIMM0120163006); the Science and Technology Commission of Shanghai Municipality (17JC1405000, 21ZR1475400, and 18431907100); the Program of Shanghai Academic Research Leader (19XD1424600); and the China Postdoctoral Science Foundation (2019M662854) for financial support.
Abstract
Spiroindoles are key scaffolds in a large number of natural products, pharmaceuticals, and agrochemicals. Selective C–H activation has emerged as a powerful synthetic approach to streamline the synthesis of substituted spiroindoles. To date, various 2- and 3-indolyl-tethered aza-spiro-centers have been successfully achieved via C–H activation. However, introduction of spiro-containing systems onto the benzenoid core of indole still remains challenging. Herein, a method of Rh(III)-catalyzed selective C7-H activation/cyclization of indole with maleimide to afford novel spiroindole derivatives is reported, which incorporate both succinimide and spirocycle into indole unit. Gram-scale synthesis demonstrates the utility of this protocol, further modification via click chemistry offered a novel scaffold as a versatile spiro linker.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1791-7218.
- Supporting Information
Publication History
Received: 25 January 2022
Accepted after revision: 08 March 2022
Accepted Manuscript online:
08 March 2022
Article published online:
20 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150
- 1b Ghatpande NG, Jadhav JS, Kaproormath RV, Soliman ME, Shaikh MM. Bioorg. Med. Chem. 2020; 28: 115813
- 1c Benabdallaha M, Talhib O, Noualia F, Choukchou-Brahama N, Bacharib K, Silva AM. S. Curr. Med. Chem. 2018; 25: 3748
- 2a Li N.-K, Zhang J.-Q, Sun B.-B, Li H.-Y, Wang X.-W. Org. Lett. 2017; 19: 1954
- 2b Chen X.-Y, Baratay CA, Mark ME, Xu X.-F, Chan PW. H. Org. Lett. 2020; 22: 2849
- 2c Zhu M, Zheng C, Zhang X, You S.-L. J. Am. Chem. Soc. 2019; 141: 2636
- 3a Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
- 3b Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
- 3c Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
- 3d Wen J, Shi Z. Acc. Chem. Res. 2021; 54: 1723
- 3e Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 3f He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 3g Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 4a Zheng J, Zhang Y, Cui S.-L. Org. Lett. 2014; 16: 3560
- 4b Chabaud L, Raynal Q, Barre E, Guillou C. Adv. Synth. Catal. 2015; 357: 3880
- 5 Zhang Y, Zheng J, Cui S.-L. J. Org. Chem. 2014; 79: 6490
- 6a Zeng H.-Y, Wang Z.-M, Li C.-J. Angew. Chem. Int. Ed. 2019; 58: 2859
- 6b Wang Z.-M, Niu J.-B, Zeng H.-Y, Li C.-J. Org. Lett. 2019; 21: 7033
- 7a Ghosh AK, Gong G, Grum-Tokars V, Mulhearn DC, Baker SC, Coughlin M, Prabhakar BS, Sleeman K, Johnson ME, Mesecar AD. Bioorg. Med. Chem. Lett. 2008; 18: 5684
- 7b Colucci J, Boyd M, Berthelette C, Chiasson J.-F, Wang Z, Ducharme Y, Friesen R, Wrona M, Levesque J.-F, Denis D, Mathieu M.-C, Stocco R, Therien AG, Clarke P, Rowland S, Xu D, Han Y. Bioorg. Med. Chem. Lett. 2010; 20: 3760
- 7c Yeung K.-S, Qiu Z, Xue Q, Fang H, Yang Z, Zadjura L, D’Arienzo CJ, Eggers BJ, Riccardi K, Shi P.-Y, Gong Y.-F, Browning MR, Gao Q, Hansel S, Santone K, Lin P.-F, Meanwell NA, Kadow JF. Bioorg. Med. Chem. Lett. 2013; 23: 198
- 8a Urbina K, Tresp D, Sipps K, Szostak M. Adv. Synth. Catal. 2021; 363: 2723
- 8b Shah TA, De PB, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 572
- 8c Vorobyeva DV, Osipov SN. Synthesis 2018; 50: 227
- 9a Tang S, Wang J, Xiong Z, Xie Z, Li D, Huang J, Zhu Q. Org. Lett. 2017; 19: 5577
- 9b Zhao M.-N, Ran L, Chen M, Ren Z.-H, Wang Y.-Y, Guan Z.-H. ACS Catal. 2015; 5: 1210
- 9c Shi J.-J, Yan Y.-N, Li Q, Xu HE, Yi W. Chem. Commun. 2014; 50: 6483
- 9d Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
- 10 Zhang J, Wang M, Wang H, Xu H, Chen J, Guo Z, Ma B, Ban S.-R, Dai H.-X. Chem. Commun. 2021; 57: 8656
- 11 Isaka M, Rugseree N, Maithip P, Kongsaeree P, Prabpai S, Thebtaranonth Y. Tetrahedron 2005; 61: 5577
- 12a Zhang L, Tan Y, Wang NX, Wu QY, Xi Z, Yang GF. Bioorg. Med. Chem. 2010; 18: 7948
- 12b Katritzky AR, Yao J, Qi M, Chou Y, Sikora DJ, Davis S. Heterocycles 1998; 48: 2677
- 13 Ramesh B, Tamizmani M, Jeganmohan M. J. Org. Chem. 2019; 84: 4058
- 15a Reader PW, Pfukwa R, Jokonya S, Arnott GE, Klumperman B. Polym. Chem. 2016; 7: 6450
- 15b Favalli N, Bassi G, Zanetti T, Scheuermann J, Neri D. Helv. Chim. Acta 2019; 102: e1900033
- 16 Kieffer ME, Repka LM, Reisman SE. J. Am. Chem. Soc. 2012; 134: 5131
For selected examples:
For selected examples:
For selected reviews: