Synlett 2022; 33(08): 777-780
DOI: 10.1055/a-1795-8092
letter

Microwave-Assisted Hydrogen-Free Reductive Deiodination of Iodoarenes with Silicon-Nanoarray Palladium-Nanoparticle Catalyst

Yuta Matsukawa
,
Yoichi M. A. Yamada
This study was supported by Japan Society for the Promotion of Science (JSPS KAKENHI, JP 20K15327), Japan Agency for Medical Research and Development (AMED, 21ak0101115h0003), and RIKEN


Abstract

The hydrogenolysis of iodoarenes using a silicon nanoarray palladium catalyst under microwave irradiation was investigated. When triethanolamine was used as the sacrificial reductant, the reaction proceeded via reductive deiodination under an aerobic atmosphere even without the presence of the explosive hydrogen gas, affording the corresponding hydrogen-substituted arenes in high yields. No reaction occurred in the absence of microwaves, indicating a noticeable microwave effect.

Supporting Information



Publication History

Received: 21 February 2022

Accepted after revision: 11 March 2022

Accepted Manuscript online:
11 March 2022

Article published online:
01 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Min H, Lee S, Park M, Hwang J, Jung H, Lee S. J. Organomet. Chem. 2014; 755: 7
    • 1b Peral D, Gómez-Villarraga F, Sala X, Pons J, Bayón JC, Ros J, Guerrero M, Vendier L, Lecante P, García-Antón J, Philippot K. Catal. Sci. Technol. 2013; 3: 475
    • 1c Kara BY, Yazici M, Kilbas B, Goksu H. Tetrahedron 2016; 72: 5898
    • 1d Arcadi A, Cerichelli G, Chiarini M, Vico R, Zorzan D. Eur. J. Org. Chem. 2004; 3404
    • 1e Cellier PP, Spindler J. -F, Taillefer M, Cristau H.-J. Tetrahedron Lett. 2003; 44: 7191
    • 1f Monguchi Y, Kume A, Hattori K, Maegawa T, Sajiki H. Tetrahedron 2006; 62: 7926
    • 1g Ambroise Y, Mioskowski C, Djéga-Mariadassou G, Rousseau B. J. Org. Chem. 2000; 65: 7183
    • 2a Navarro O, Marion N, Oonishi Y, Kelly RA. III, Nolan SP. J. Org. Chem. 2006; 71: 685
    • 2b Iranpoor N, Firouzabadi H, Azadi R. J. Organomet. Chem. 2010; 695: 887
  • 3 Hara R, Sun W, Nishihara Y, Takahashi T. Chem. Lett. 1997; 26: 1251
    • 4a Czaplik MW, Grupe S, Mayer M, von Wangelin AJ. Chem. Commun. 2010; 46: 6350
    • 4b Moglie Y, Alonso F, Vitale C, Yus M, Radivoy G. Appl. Catal. A 2006; 313: 94
  • 5 Narisada M, Horibe I, Watanabe F, Takeda K. J. Org. Chem. 1989; 54: 5308
    • 6a Weidauer M, Irran E, Someya CI, Haberberger M, Enthaler S. J. Organomet. Chem. 2013; 729: 53
    • 6b Desmarets C, Kuhl S, Schneider R, Fort Y. Organometallics 2002;  21: 1554
  • 7 Mochizuki K, Suzuki M. Inorg. Chem. Commun. 2011; 14: 902
    • 8a Eisenreich F, Meijer EW, Palmans AR. A. Chem. Eur. J. 2020; 26: 10355
    • 8b Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
    • 9a Liu W, Wang F. Tetrahedron Lett. 2017; 58: 1673
    • 9b Adimurthya S, Ramachandraiah G. Tetrahedron Lett. 2004;  45: 5251
    • 9c Dichiarante V, Fagnoni M, Albini A. Green Chem. 2009; 11: 942
    • 10a Morimoto T, Nakajima T, Sawa S, Nakanishi R, Imori D, Ishitani O. J. Am. Chem. Soc. 2013; 135: 16825
    • 10b Koizumi H, Chiba H, Sugihara A, Iwamura M, Nozaki K, Ishitani O. Chem. Sci. 2019; 10: 3080
  • 11 Ohde D, Thomas B, Matthes S, Tanaka S, Bubenheim P, Terasaka K, Schlüter M, Liese A. RSC Adv. 2021; 11: 4087
  • 12 SDS data sheet distributed by Tokyo Chemical Industry (TCI).
  • 13 Yamada MA. Y, Yuyama Y, Sato T, Fujikawa S, Uozumi Y. Angew. Chem. Int. Ed. 2014; 53: 127
    • 14a Yamada YM. A, Baek H, Sato T, Nakao A, Uozumi Y. Commun. Chem. 2020; 3 81
    • 14b Baek H, Sato T, Uozumi Y, Yamada MA. Y. Eur. J. Inorg. Chem. 2021; 708
  • 15 Baek H, Kashimura K, Fujii T, Wada Y, Fujikawa S, Sato T, Uozumi Y, Yamada MA. Y. ACS Catal. 2020; 10: 2148
  • 16 The reaction temperatures under microwave hearing were measured with an IR thermometer (calibrated with an alcohol thermometer)
  • 17 As a result of a reusability test, 51% yield of 2a was obtained.
  • 18 A reactor was inserted in an oil bath which was preheated at the reaction temperatures in advance.
  • 19 After starting the reaction, the temperature reached the reaction temperature in around 1 min under both microwave and thermal heating
  • 20 General ProcedureSiNA-Pd (600 mol ppm) was added to a mixture containing 1 (0.85 mmol), TEOA (1.71 mmol), and dry DMF (3.0 mL) in a glass vial equipped with silicone rubber and polytetrafluoroethylene lids. The resulting reaction vial was irradiated with microwave at 130 °C for 1.5 h under an aerobic atmosphere. After the reaction, an aliquot was analyzed via GC in the presence of decane (for 1e) or mesitylene (for the other substrates) as the internal standards. Biphenyl (2f)Compound 2f was isolated using the following general procedure in the reaction of 1h (238 mg, 0.850 mmol). After the reaction was completed, the reaction mixture was cooled to 25 °C. Toluene (30 mL) was then added, and the resulting mixture was washed with 1 M HCl (5 × 10 mL). The organic layer was dried over MgSO4 and evaporated in vacuo to obtain biphenyl (127 mg, 0.825 mmol, 97%). 1H NMR (500 MHz, CDCl3): δ = 7.60 (d, 4 H, J = 7.0 Hz, o-Ph), 7.44 (t, 4 H, J = 7.7 Hz, m-Ph), 7.35 (t, 2 H, J = 7.3 Hz, p-Ph). Using the same procedure with 1k (206 mg, 0.849 mmol), indole (2k, 72.1 mg, 0.615 mmol, 73%) was also obtained. 1H NMR (500 MHz, CDCl3): δ = 7.65 (d, 1 H, J = 8.0 Hz), 7.41 (d, 1 H, J = 8.0 Hz), 7.22–7.18 (m, 2 H), 7.12 (t, 1 H, J = 7.5 Hz), 6.56 (s, 1 H).