Subscribe to RSS
DOI: 10.1055/a-1799-0459
Eight-Step Asymmetric Synthesis of (–)-Berkelic Acid
This work is supported by the Fundamental Research Funds for the Central Universities (2042020kf0039 and 2042021kf0214), the National Natural Science Foundation of China (Grants 21801193, 21871213, and 22071189) and the startup funding from Wuhan University.
Abstract
We herein report an eight-step asymmetric synthesis of (–)-berkelic acid. This work features a sequential Catellani-type reaction/oxa-Michael addition with epoxides as dual-functionalized alkylating reagents for synthesizing the isochroman framework, a one-pot, acid-catalyzed deprotection/spiroacetalization process for the construction of a tetracyclic core intermediate, and a late-stage Ni-catalyzed reductive coupling reaction for the installation of the side chain. Remarkably, during the deprotection/spiroacetalization process, four new stereocenters are created with high stereocontrol from a single existing chiral center.
Key words
(–)-berkelic acid - total synthesis - Catellani reaction - C–H activation - spiroacetalization - reductive couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1799-0459.
- Supporting Information
Publication History
Received: 25 February 2022
Accepted after revision: 15 March 2022
Accepted Manuscript online:
15 March 2022
Article published online:
19 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Stierle AA, Stierle DB, Kelly K. J. Org. Chem. 2006; 71: 5357
- 2a Buchgraber P, Snaddon TN, Wirtz C, Mynott R, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2008; 47: 8450
- 2b Snaddon TN, Buchgraber P, Schulthoff S, Wirtz C, Mynott R, Fürstner A. Chem. Eur. J. 2010; 16: 12133
- 3a Zhou J, Snider BB. Org. Lett. 2007; 9: 2071
- 3b Wu X, Zhou J, Snider BB. Angew. Chem. Int. Ed. 2009; 48: 1283
- 3c Wu X, Zhou J, Snider BB. J. Org. Chem. 2009; 74: 6245
- 4a Bender CF, Yoshimoto FK, Paradise CL, De Brabander JK. J. Am. Chem. Soc. 2009; 131: 11350
- 4b Bender CF, Paradise CL, Lynch VM, Yoshimoto FK, De Brabander JK. Tetrahedron 2018; 74: 909
- 5a Fañanás FJ, Mendoza A, Arto T, Temelli B, Rodríguez F. Angew. Chem. Int. Ed. 2012; 51: 4930
- 5b Arto T, Mendoza A, Fañanás FJ, Rodríguez F. In Strategies and Tactics in Organic Synthesis . Harmata M. Elsevier; Amsterdam: 2014: 33
- 5c Arto T, de Santa-María IS, Chiara M.-D, Fañanás FJ, Rodríguez F. Eur. J. Org. Chem. 2016; 5876
- 6 Wang H.-H, Wang X.-D, Cao F, Gao W.-W, Ma S.-M, Li Z, Deng X.-M, Shi T, Wang Z. Org. Chem. Front. 2021; 8: 82
- 7a Huang Y, Pettus TR. Synlett 2008; 1353
- 7b Wenderski TA, Marsini MA, Pettus TR. Org. Lett. 2011; 13: 118
- 8a Wilson ZE, Brimble MA. Org. Biomol. Chem. 2010; 8: 1284
- 8b McLeod MC, Wilson ZE, Brimble MA. Org. Lett. 2011; 13: 5382
- 8c Brimble MA, Haym I, Sperry J, Furkert DP. Org. Lett. 2012; 14: 5820
- 8d McLeod MC, Wilson ZE, Brimble MA. J. Org. Chem. 2012; 77: 400
- 9 The recent bioactivity studies of (–)-berkelic acid (see refs. 3c, 4b, 5c, and 6) are inconsistent with the originally reported ones (see ref. 1), which deserves further systematic studies.
- 10a Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. Engl. 1997; 36: 119
- 10b Lautens M, Paquin J.-F, Piguel S. J. Org. Chem. 2002; 67: 3972
- 10c Pache S, Lautens M. Org. Lett. 2003; 5: 4827
- 10d Alberico D, Paquin J.-F, Lautens M. Tetrahedron 2005; 61: 6283
- 11a Jiao L, Herdtweck E, Bach T. J. Am. Chem. Soc. 2012; 134: 14563
- 11b Weinstabl H, Suhartono M, Qureshi Z, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 5305
- 11c Mizutani M, Yasuda S, Mukai C. Chem. Commun. 2014; 50: 5782
- 11d Zhao K, Xu S, Pan C, Sui X, Gu Z. Org. Lett. 2016; 18: 3782
- 11e Jiang S.-Z, Zeng X.-Y, Liang X, Lei T, Wei K, Yang Y.-R. Angew. Chem. Int. Ed. 2016; 55: 4044
- 11f Xiao T, Chen Z.-T, Deng L.-F, Zhang D, Liu X.-Y, Song H, Qin Y. Chem. Commun. 2017; 53: 12665
- 11g Liu F, Dong Z, Wang J, Dong G. Angew. Chem. Int. Ed. 2019; 58: 2144
- 11h Gao S, Qian G, Tang H, Yang Z, Zhou Q. ChemCatChem 2019; 11: 5762
- 11i Yoshida K, Okada K, Ueda H, Tokuyama H. Angew. Chem. Int. Ed. 2020; 59: 23089
- 11j Zhao P, Guo Y, Luan X. J. Am. Chem. Soc. 2021; 143: 21270
- 12a Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 12b Knappke CE. I, Grupe S, Gartner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 12c Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 12d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 12e Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 12f Wotal AC, Weix DJ. Org. Lett. 2012; 14: 1476
- 12g Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
- 12h Yin H, Zhao C, You H, Lin K, Gong H. Chem. Commun. 2012; 48: 7034
- 12i Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
- 12j Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
- 12k Jia X, Zhang X, Qian Q, Gong H. Chem. Commun. 2015; 51: 10302
- 12l Lu X, Wang Y, Zhang B, Pi JJ, Wang XX, Gong TJ, Xiao B, Fu Y. J. Am. Chem. Soc. 2017; 139: 12632
- 12m Sun SZ, Borjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 12n Luo L, Zhai XY, Wang YW, Peng Y, Gong H. Chem. Eur. J. 2019; 25: 989
- 12o Pan FF, Guo P, Li CL, Su P, Shu XZ. Org. Lett. 2019; 21: 3701
- 12p Zhuo J, Zhang Y, Li Z, Li C. ACS Catal. 2020; 10: 3895
- 12q Wang J, Hoerrner ME, Watson MP, Weix DJ. Angew. Chem. Int. Ed. 2020; 59: 13484
- 13 Björkling F, Boutelje J, Gatenbeck S, Hult K, Norin T, Szmulik P. Tetrahedron 1985; 41: 1347
- 14a Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
- 14b Cheng G, Li T.-J, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 10950
- 14c Li D.-D, Niu L.-F, Ju ZY, Xu Z, Wu C. Eur. J. Org. Chem. 2016; 3090
- 15a Li R, Dong G. Angew. Chem. Int. Ed. 2018; 57: 1697
- 15b Wu C, Cheng H.-G, Chen R, Chen H, Liu Z.-S, Zhang J, Zhang Y, Zhu Y, Geng Z, Zhou Q. Org. Chem. Front. 2018; 5: 2533
- 15c Li R, Liu F, Dong G. Org. Chem. Front. 2018; 5: 3108
- 16a Cheng H.-G, Wu C, Chen H, Chen R, Qian G, Geng Z, Wei Q, Xia Y, Zhang J, Zhang Y, Zhou Q. Angew. Chem. Int. Ed. 2018; 57: 3444
- 16b Wu C, Cheng H.-G, Zhou Q. Synlett 2020; 31: 829
- 17 Dewi-Wülfing P, Gebauer J, Blechert S. Synlett 2006; 487
- 18 Yu K, Yang ZN, Liu CH, Wu SQ, Hong X, Zhao XL, Ding H. Angew. Chem. Int. Ed. 2019; 58: 8556
- 19 For related density functional theory (DFT) calculation results, see our previous work: Cheng H.-G, Yang Z, Chen R, Cao L, Tong W.-Y, Wei Q, Wang Q, Wu C, Qu S, Zhou Q. Angew. Chem. Int. Ed. 2021; 60: 5141
- 20 Chiral acid 2a is synthesized via an enzymatic hydrolysis of the known diester 5 (according to Björkling’s work (ref. 13)). Chiral acyl chloride 2b was synthesized via the reaction of 2a with SOCl2. See the Supporting Information for details.
- 21 The 22R-diastereomer of (–)-berkelic acid methyl ester 23 and other diastereoisomers were also generated via this reductive coupling procedure (detected by HRMS and crude 1H NMR). Unfortunately, due to contamination with some unidentified impurities with a similar polarity, we failed to obtain a pure sample for characterization.
- 22 Mata EG, Mascaretti OA. Tetrahedron Lett. 1988; 29: 6893
- 23 Luo Z, Cheng H, Xu W. Chin. J. Chem. 2010; 28: 303
- 24 See the Supporting Information for more details.
For selected total synthesis examples applying the Catellani-type reaction as the key step, see:
For selected reviews, see:
For selected recent examples, see: