Drug Res (Stuttg) 2022; 72(05): 274-283
DOI: 10.1055/a-1801-6793
Review

An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines

Shweta Mittal
1   NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
,
Chandrashekhar Mahadeo Chakole
1   NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
,
Aman Sharma
1   NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
,
Jaya Pandey
2   Amity School school of Applied Sciences Lucknow, Amity University, Uttar Pradesh, India
,
1   NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
› Author Affiliations

Abstract

Nanotechnology-based nanomedicine offers several benefits over conventional forms of therapeutic agents. Moreover, nanomedicine has become a potential candidate for targeting therapeutic agents at specific sites. However, nanomedicine prepared by synthetic methods may produce unwanted toxic effects. Due to their nanosize range, nanoparticles can easily reach the reticuloendothelial system and may produce unwanted systemic effects. The nanoparticles produced by the green chemistry approach would enhance the safety profile by avoiding synthetic agents and solvents in its preparations. This review encompasses toxicity consideration of nanoparticles, green synthesis techniques of nanoparticle preparation, biomedical application of nanoparticles, and future prospects.



Publication History

Received: 08 January 2022

Accepted: 09 March 2022

Article published online:
13 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Patra JK, Das G, Fraceto LF. et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J Nanobiotechnology 2018; 16: 1-33
  • 2 Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. P T 2012; 37: 582-591
  • 3 Chakole MC, Chauhan KM. Research Progress of Nanostructured Lipid Carriers in Ocular Drug Delivery. Drug Deliv Lett 2021; 11: 203-219
  • 4 Li C, Wang J, Wang Y. et al. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9: 1145-1162
  • 5 Chauhan MK. Surface modified nanostructured lipid carrier for improved ocular delivery: in vitro and ex-vivo study. J Med Pharm allied Sci 2021; 11: 75-80
  • 6 Din FU, Aman W, Ullah I. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-7309
  • 7 Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12: 908-931
  • 8 Mishra M, Sharma M, Dubey R. et al. Green synthesis interventions of pharmaceutical industries for sustainable development. Curr Res Green Sustain Chem 2021; 4: 100174
  • 9 Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14: 282-295
  • 10 De Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3: 133-149
  • 11 Gupta R, Xie H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J Environ Pathol Toxicol Oncol Off organ Int Soc Environ Toxicol Cancer 2018; 37: 209-230
  • 12 Kamaly N, Yameen B, Wu J. et al. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116: 2602-2663
  • 13 Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33: 941-951
  • 14 Abdussalam-Mohammed W, Qasem Ali A, Errayes AO. Green Chemistry: Principles, Applications, and Disadvantages. Chem Methodol 2020; 4: 408-423
  • 15 Sindhu R, Verma A, Sharma D. et al. Applications of Green Chemistry in Pharmaceutical Chemistry and Day Today Life. Arch Med Pharm Sci Res 2017; 1: 39-44
  • 16 Kate A, Sahu LK, Pandey J. et al. Green catalysis for chemical transformation: The need for the sustainable development. Curr Res Green Sustain Chem 2022; 5: 100248
  • 17 Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev 2015; 44: 5778-5792
  • 18 Das RK, Pachapur VL, Lonappan L. et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2017; 2: 1-21
  • 19 Ovais M, Khalil AT, Islam NU. et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 2018; 102: 6799-6814
  • 20 Mohd Yusof H, Mohamad R, Zaidan UH. et al. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10: 57
  • 21 Chakole CM, Sahoo PK, Pandey J. et al. A green chemistry approach towards synthesizing hydrogel for sustained ocular delivery of brinzolamide: In vitro and ex vivo evaluation. J Indian Chem Soc 2021; 100323
  • 22 Warheit DB. Nanoparticles: Health impacts?. Mater Today 2004; 7: 32-35
  • 23 Oberdörster G, Maynard A, Donaldson K. et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2: 8
  • 24 Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 2006; 6: 651-663
  • 25 Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013; 2013: 942916
  • 26 Card JW, Zeldin DC, Bonner JC. et al. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 2008; 295: L400-L411
  • 27 Shvedova AA, Kisin ER, Mercer R. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005; 289: L698-L708
  • 28 Radomski A, Jurasz P, Alonso-Escolano D. et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005; 146: 882-893
  • 29 Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2: 469-478
  • 30 Nemmar A, Beegam S, Yuvaraju P. et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol 2016; 13: 22
  • 31 Li Y, Li J, Yin J. et al. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol 2010; 10: 8544-8549
  • 32 Kao Y-Y, Cheng T-J, Yang D-M. et al. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 2012; 48: 464-471
  • 33 Asgharian B, Price OT. Deposition of ultrafine (nano) particles in the human lung. Inhal Toxicol 2007; 19: 1045-1054
  • 34 Avila-Olias M, Pegoraro C, Battaglia G. et al. Inspired by nature: fundamentals in nanotechnology design to overcome biological barriers. Ther Deliv 2012; 4: 27-43
  • 35 Pan Y, Neuss S, Leifert A. et al. Size-dependent cytotoxicity of gold nanoparticles. Small 2007; 3: 1941-1949
  • 36 Choi S, Kim S, Bae Y-J. et al. Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai. Environ Health Toxicol 2015; 30: e2015003
  • 37 Carlson C, Hussain SM, Schrand AM. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112: 13608-13619
  • 38 Lovrić J, Bazzi HS, Cuie Y. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 2005; 83: 377-385
  • 39 Wang S, Lu W, Tovmachenko O. et al. Challenge in Understanding Size and Shape Dependent Toxicity of Gold Nanomaterials in Human Skin Keratinocytes. Chem Phys Lett 2008; 463: 145-149
  • 40 Bhatia S. Natural Polymer Drug Delivery Systems Nanoparticles: Nanoparticles, Mammals and microbes. 2016
  • 41 Cavallo D, Fanizza C, Ursini CL. et al. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol 2012; 32: 454-464
  • 42 Chauhan VP, Popović Z, Chen O. et al. Fluorescent Nanorods and Nanospheres for Real-Time In Vivo Probing of Nanoparticle Shape-Dependent Tumor Penetration. Angew Chemie Int Ed 2011; 50: 11417-11420
  • 43 Fubini B, Fenoglio I, Tomatis M. et al. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine 2011; 6 5: 899-920
  • 44 Zhang Y, Xu D, Li W. et al. Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells. J Nanomater 2012; 2012: 375496
  • 45 Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2: 214-221
  • 46 Schellekens H, Hennink WE, Brinks V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 2013; 30: 1729-1734
  • 47 Abdelghany TM, Al-Rajhi AMH, Al Abboud MA. et al. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. Bionanoscience 2018; 8: 5-16
  • 48 Hussain I, Singh NB, Singh A. et al. Green synthesis of nanoparticles and its potential application. Biotechnol Lett 2016; 38: 545-560
  • 49 Shah M, Fawcett D, Sharma S. et al. Green Synthesis of Metallic Nanoparticles via Biological Entities. Mater (Basel, Switzerland) 2015; 8: 7278-7308
  • 50 Nadaroglu H, Onem H, Alayli Gungor A. Green synthesis of Ce(2)O(3) NPs and determination of its antioxidant activity. IET nanobiotechnology 2017; 11: 411-419
  • 51 Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Crit Rev Biotechnol 2009; 29: 279-306
  • 52 Nikolaos P, Louise EH. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J Nanomed Nanotechnol 2014; 05
  • 53 Schlüter M, Hentzel T, Suarez C. et al. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 2014; 117: 462-470
  • 54 Sintubin L, De Windt W, Dick J. et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 2009; 84: 741-749
  • 55 Baco-Carles V, Datas L, Tailhades P. Copper Nanoparticles Prepared from Oxalic Precursors. ISRN Nanotechnol 2011; 2011: 729594
  • 56 Gao Y, Wei Z, Li F. et al. Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 2014; 16: 1255-1261
  • 57 Ummartyotin S, Bunnak N, Juntaro J. et al. Synthesis of colloidal silver nanoparticles for printed electronics. Comptes Rendus Chim 2012; 15: 539-544
  • 58 Mukherjee P, Ahmad A, Mandal D. et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett 2001; 1: 515-519
  • 59 Spadaro D, Gullino ML. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 2005; 24: 601-613
  • 60 Mukherjee P, Roy M, Mandal BP. et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 2008; 19: 75103
  • 61 Vahabi K, Mansoori GA, Karimi S. Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insciences J 2011; 1: 65-79
  • 62 Mandal D, Bolander ME, Mukhopadhyay D. et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 2006; 69: 485-492
  • 63 Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces 2014; 121: 474-483
  • 64 Kowshik M, Ashtaputre S, Kharrazi S. et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2002; 14: 95-100
  • 65 Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull 2006; 39: 22-28
  • 66 Siddiqi KS, Husen A. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects. Nanoscale Res Lett 2016; 11: 363
  • 67 Karaduman I, Güngör AA, Nadaroglu H. et al. Green synthesis of $γ$-Fe2O3 nanoparticles for methane gas sensing. J Mater Sci Mater Electron 2017; 28: 16094-16105
  • 68 Luangpipat T, Beattie IR, Chisti Y. et al. Gold nanoparticles produced in a microalga. J Nanoparticle Res 2011; 13: 6439-6445
  • 69 Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31: 346-356
  • 70 Husseiny MI, El-Aziz MA, Badr Y. et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 2007; 67: 1003-1006
  • 71 Durán N, Seabra AB. Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 2012; 95: 275-288
  • 72 Makarov VV, Love AJ, Sinitsyna OV. et al. „Green“ nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014; 6: 35-44
  • 73 Bar H, Bhui DK, Sahoo GP. et al. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surfaces A Physicochem Eng Asp 2009; 339: 134-139
  • 74 Krishnaraj C, Jagan EG, Rajasekar S. et al. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 2010; 76: 50-56
  • 75 Lukman AI, Gong B, Marjo CE. et al. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 2011; 353: 433-444
  • 76 Mallikarjuna K, Narasimha G, Dillip GR. et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostructures 2011; 6: 181-186
  • 77 Edison TJI, Sethuraman MG. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 2012; 47: 1351-1357
  • 78 Poinern GEJ, Chapman P, Shah M. et al. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull 2013; 2: 130101
  • 79 Das RK, Gogoi N, Bora U. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 2011; 34: 615-619
  • 80 Kasthuri J, Kathiravan K, Rajendiran N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J Nanoparticle Res 2009; 11: 1075-1085
  • 81 Raveendran P, Fu J, Wallen SL. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. J Am Chem Soc 2003; 125: 13940-13941
  • 82 Ma Y, Li N, Yang C. et al. One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors. Anal Bioanal Chem 2005; 382: 1044-1048
  • 83 Saha S, Pal A, Kundu S. et al. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010; 26: 2885-2893
  • 84 Laudenslager MJ, Schiffman JD, Schauer CL. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 2008; 9: 2682-2685
  • 85 Cai J, Kimura S, Wada M. et al. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2009; 10: 87-94
  • 86 Kemp MM, Kumar A, Mousa S. et al. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules 2009; 10: 589-595
  • 87 Shankar SS, Rai A, Ahmad A. et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 2004; 275: 496-502
  • 88 Mondal S, Roy N, Laskar RA. et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B Biointerfaces 2011; 82: 497-504
  • 89 Sheny DS, Mathew J, Philip D. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79: 254-262
  • 90 Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13: 2638-2650
  • 91 Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010; 45: 1065-1071
  • 92 Sathishkumar M, Sneha K, Yun Y-S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 2010; 101: 7958-7965
  • 93 Prathna TC, Chandrasekaran N, Raichur AM. et al. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surfaces A Physicochem Eng Asp 2011; 377: 212-216
  • 94 Chandran SP, Chaudhary M, Pasricha R. et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22: 577-583
  • 95 Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z. et al. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: A green eco-friendly approach. Process Biochem 2015; 50: 1076-1085
  • 96 Adelere I, Lateef A. A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 2016; 5: 567-587
  • 97 Kou J, Varma RS. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv 2012; 2: 10283-10290
  • 98 Nadagouda MN, Varma RS. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem 2006; 8: 516-518
  • 99 Shao Y, Wu C, Wu T. et al. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int J Biol Macromol 2018; 111: 1281-1292
  • 100 Malassis L, Dreyfus R, Murphy RJ. et al. One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Adv 2016; 6: 33092-33100
  • 101 Baruwati B, Varma RS. High value products from waste: grape pomace extract – a three-in-one package for the synthesis of metal nanoparticles. ChemSusChem 2009; 2: 1041-1044
  • 102 Cho K, Wang X, Nie S. et al. Therapeutic nanoparticles for drug delivery in cancer. Clin cancer Res an Off J Am Assoc Cancer Res 2008; 14: 1310-1316
  • 103 Devendiran RM, Chinnaiyan Skumar, Yadav NK. et al. Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Adv 2016; 6: 29757-29768
  • 104 Elia P, Zach R, Hazan S. et al. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine 2014; 9: 4007-4021
  • 105 Valodkar M, Rathore PS, Jadeja RN. et al. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 2012; 201–202 244-249
  • 106 Wang C, Mathiyalagan R, Kim YJ. et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine 2016; 11: 3691-3701
  • 107 Ganeshkumar M, Ponrasu T, Raja MD. et al. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta Part A Mol Biomol Spectrosc 2014; 130: 64-71
  • 108 Patra S, Mukherjee S, Barui AK. et al. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 2015; 53: 298-309
  • 109 Mukherjee S, Sau S, Madhuri D. et al. Green Synthesis and Characterization of Monodispersed Gold Nanoparticles: Toxicity Study, Delivery of Doxorubicin and Its Bio-Distribution in Mouse Model. J Biomed Nanotechnol 2016; 12: 165-181
  • 110 Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 2013; 9: e1003467
  • 111 Prentice CR, McNicol GP, Douglas AS. Effects on blood coagulation, fibrinolysis, and platelet aggregation of normal and atheronatous aortic tissue. J Clin Pathol 1966; 19: 154-158
  • 112 Kim H-S, Jun SH, Koo YK. et al. Green synthesis and nanotopography of heparin-reduced gold nanoparticles with enhanced anticoagulant activity. J Nanosci Nanotechnol 2013; 13: 2068-2076
  • 113 Bayat Tork M, Hemmati Nejad N, Ghalehbagh S. et al. In situ green synthesis of silver nanoparticles/chitosan/poly vinyl alcohol/poly ethylene glycol hydrogel nanocomposite for novel finishing of nasal tampons. J Ind Text 2014; 45: 1399-1416
  • 114 Raveendran S, Ravindran Girija A, Balasubramanian S. et al. Green Approach for Augmenting Biocompatibility to Quantum Dots by Extremophilic Polysaccharide Conjugation and Nontoxic Bioimaging. ACS Sustain Chem Eng 2014; 2: 1551-1558
  • 115 Processes G. Green Processes for Nanotechnology. Green Process Nanotechnol 2015;
  • 116 Huo Q. A perspective on bioconjugated nanoparticles and quantum dots. Colloids Surf B Biointerfaces 2007; 59: 1-10
  • 117 Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2012; 2: 953-959
  • 118 Ahmad N, Sharma S, Alam MK. et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surfaces B Biointerfaces 2010; 81: 81-86
  • 119 Du L, Jiang H, Liu X. et al. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem commun 2007; 9: 1165-1170
  • 120 Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B Biointerfaces 2006; 47: 160-164
  • 121 Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 2009; 100: 501-504
  • 122 Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 2014; 4: 93
  • 123 Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 2011; 46: 1800-1807
  • 124 Kowshik M, Vogel W, Urban J. et al. Microbial Synthesis of Semiconductor PbS Nanocrystallites. Adv Mater 2002; 14: 815-818