Angewandte Nuklearmedizin 2023; 46(01): 51-57
DOI: 10.1055/a-1802-8504
Dosimetrie
Übersicht

Dosimetrie bei der Peptid-Radio-Rezeptor-Therapie (PRRT)

Dosimetry in peptide radio receptor therapy (PRRT)
Astrid Delker
1   Klinik und Poliklinik für Nuklearmedizin, LMU Klinikum, München, Deutschland
› Author Affiliations

Zusammenfassung

Die Peptid-Radio-Rezeptor-Therapie (PRRT) hat sich in den letzten Jahren als vielversprechende Therapieoption des inoperablen metastasierten neuroendokrinen Tumors (NET) entwickelt. In Form von Radiotherapeutika wie 177Lu-DOTATATE oder 90Y-DOTATOC kombiniert die PRRT strahlentherapeutische und pharmakologische Prinzipien, um eine selektive und interne Bestrahlung von NET unabhängig von deren Lokalisation im Körper zu ermöglichen. Die patientenspezifische Dosimetrie ist dabei ein elementarer Bestandteil der Patientensicherheit, ermöglicht aber auch grundlegende Wirkmechanismen der PRRT zu identifizieren sowie das therapeutische Fenster optimal auszuschöpfen. Dieser Übersichtsartikel soll die Grundlagen der patientenspezifischen Dosimetrie für die PRRT beleuchten sowie den aktuellen Stand der Forschung zur patientenspezifischen Dosimetrie innerhalb der klinischen Routine der PRRT.

Abstract

In recent years, peptide-radio-receptor-therapy (PRRT) has emerged as a promising treatment option for inoperable metastatic neuroendocrine tumour (NET). In form of radiopharmaceuticals such as 177Lu-DOTATATE or 90Y-DOTATOC, PRRT combines radiotherapeutic and pharmacological principles to provide a selective internal irradiation of NET regardless of the location in the body. Patient-specific dosimetry is an elementary component of patient safety, but also enables the identification of basic mechanisms of PRRT as well as the optimal exploitation of the therapeutic window. This review article is intended to shed light on the basics of patient-specific dosimetry for PRRT as well as on the current state of research of patient-specific dosimetry within the clinical routine of PRRT.



Publication History

Article published online:
21 March 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Strosberg J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. New England Journal of Medicine 2017; 376: 125-135
  • 2 Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA: a cancer journal for clinicians 2018; 68: 471-487
  • 3 Zaknun JJ. et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. EJNMMI 2013; 40: 800-816
  • 4 Ljungberg M. et al. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med 2016; 57: 151-162
  • 5 Bodei L. et al. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer. Semin Nucl Med 2016; 46: 225-238
  • 6 Valkema R. et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 2005; 46 (Suppl. 01) 83S-91S
  • 7 Cremonesi M. et al. Correlation of dose with toxicity and tumour response to 90Y-and 177Lu-PRRT provides the basis for optimization through individualized treatment planning. EJNMMI 2018; 45: 2426-2441
  • 8 Konijnenberg M. et al. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med 2007; 48: 134-142
  • 9 Yordanova A, Ahmadzadehfar H. Combination Therapies with PRRT. Pharmaceuticals 2021; 14: 1005
  • 10 Units, I.C.o.R. Radiation quantities and units. Vol. 84. 1962: US Government Printing Office.
  • 11 Konijnenberg M. et al. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. EJNMMI 2021; 48: 67-72
  • 12 Bolch WE. et al. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med 2009; 50: 477-484
  • 13 Siegel JA. et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999; 40: 37S-61S
  • 14 Dewaraja YK. et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 2012; 53: 1310-1325
  • 15 Cremonesi M. et al. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006; 47: 1467-1475
  • 16 Walrand S. et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging?. EJNMMI 2011; 38: 57-68
  • 17 Garkavij M. et al. 177Lu‐[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer 2010; 116: 1084-1092
  • 18 Delker A. et al. The influence of early measurements onto the estimated kidney dose in [177 Lu][DOTA 0, Tyr 3] Octreotate peptide receptor radiotherapy of neuroendocrine tumors. Mol Imaging Biol 2015; 17: 726-734
  • 19 Huizing DMV, Verheij M, Stokkel MM. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI research 2018; 8: 1-11
  • 20 Grimes J, Celler A. Comparison of internal dose estimates obtained using organ‐level, voxel S value, and Monte Carlo techniques. Medical physics 2014; 41: 092501
  • 21 Brosch-Lenz J. et al. Influence of dosimetry method on bone lesion absorbed dose estimates in PSMA therapy: application to mCRPC patients receiving Lu-177-PSMA-I&T. EJNMMI physics 2021; 8: 1-17
  • 22 Sanchez-Garcia M. et al. A new approach for dose calculation in targeted radionuclide therapy (TRT) based on collapsed cone superposition: validation with 90Y. Phys Med Biol 2014; 59: 4769
  • 23 Chauvin M. et al. OpenDose: Open-access resource for nuclear medicine dosimetry. J Nucl Med 2020; 61: 1514-1519
  • 24 Garske-Román U. et al. Prospective observational study of 177 Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. EJNMMI 2018; 45: 970-988
  • 25 Hindorf C. et al. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. EJNMMI 2010; 37: 1238-1250
  • 26 Forrer F. et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177 Lu-DOTA 0, Tyr 3] octreotate. EJNMMI 2009; 36: 1138-1146
  • 27 Hagmarker L. et al. Bone marrow absorbed doses and correlations with hematologic response during 177Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases. J Nucl Med 2019; 60: 1406-1413
  • 28 Svensson J. et al. A novel planar image-based method for bone marrow dosimetry in 177 Lu-DOTATATE treatment correlates with haematological toxicity. EJNMMI physics 2016; 3: 1-12
  • 29 Gosewisch A. et al. 3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT. EJNMMI research 2019; 9: 1-14
  • 30 Svensson J. et al. Radiation exposure of the spleen during 177 Lu-DOTATATE treatment and its correlation with haematological toxicity and spleen volume. EJNMMI physics 2016; 3: 1-9
  • 31 Ilan E. et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med 2015; 56: 177-182
  • 32 Sandström M. et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med 2013; 54: 33-41
  • 33 Sundlöv A. et al. Individualised 177 Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. EJNMMI 2017; 44: 1480-1489
  • 34 Ljungberg M, Sjögreen-Gleisner K. The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study. Acta oncologica 2011; 50: 981-989