Angewandte Nuklearmedizin 2023; 46(01): 20-25
DOI: 10.1055/a-1802-8529
Dosimetrie
Übersicht

Kleintierdosimetrie für die diagnostische PET Bildgebung

Small animal dosimetry for PET diagnostic imaging
Mathias Kranz
1   Tromsø PET Imaging Center, University Hospital North-Norway, Tromsø, Norway
› Author Affiliations

Zusammenfassung

Vor der erstmaligen Anwendung neuartiger Radiopharmazeutika für die PET Bildgebung im Menschen muss deren Strahlenrisiko abgeschätzt werden. Neben ex vivo Methoden, welche die Verwendung von Tieren voraussetzt, bieten bildgebende in vivo Methoden unter Nutzung entsprechender Kleintierscanner die Möglichkeit Langzeitstudien durchzuführen und die Tiere für weitere Versuche zu verwenden. Aktuell stehen verschiedene kommerziell erhältliche PET Kameras speziell für Mäuse und Ratten zur Verfügung. Größere Spezies wie z. B. Ferkel können in humanen PET Scannern untersucht werden.

Bei der Verwendung von anhand Tieren erhobener Daten für die Dosisabschätzung im Menschen, müssen deren Biokinetik auf den Menschen extrapoliert werden, um Unterschiede im Metabolismus und der Anatomie auszugleichen. Die anschließende Organdosisberechnung kann mit Hilfe verschiedener Software erfolgen (z. B. Olinda) und die effektive Dosis als Maß des kumulierten Strahlenrisikos abgeschätzt werden.

Die Durchführung einer präklinischen Dosimetriestudie dient dem Ziel einer Abschätzung des Strahlenrisikos für das Individuum nach Inkorporation eines Radiopharmazeutikums. Es können kritische Organe und der Ausscheidungsweg identifiziert werden, jedoch sollten die Ergebnisse einer präklinischen Dosimetriestudie immer mit Hinblick auf die methodischen Limitationen betrachtet werden. Aktuelle Untersuchungen zeigen eine Unterschätzung der Exposition um bis zu 40 % und dies sollte bei der Beantragung einer frühen klinischen Studie berücksichtig werden.

Abstract

Before novel radiopharmaceuticals can be applied for PET imaging in humans for the first time, their radiation risk must be assessed using suitable animal models. In addition to ex vivo methods, which require to sacrifice the animals, in vivo imaging methods using appropriate small animal scanners offer the possibility of conducting long-term studies and using the animals for further experiments again. Various PET cameras dedicated for mice and rats are commercially available. Larger species such as piglets can be measured in human PET scanners for deriving the biokinetic data.

When using animal data for dose estimation in humans, their biokinetics must be extrapolated to human entity to compensate for differences in metabolism and anatomy. The subsequent organ dose calculation can be carried out using various software (e. g. Olinda) and the effective dose can be estimated as a measure of the cumulative radiation risk.

Carrying out preclinical dosimetry calculations serve the purpose of estimating the radiation risk after the incorporation of a radiopharmaceutical. Critical organs and the route of excretion can be identified, but the results of a preclinical dosimetry study should always be considered with regard to the methodological limitations. Recent studies show an underestimation of exposure by up to 40 % and this should be taken into account when applying for first-in-man studies.



Publication History

Article published online:
21 March 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Referenzen

  • 1 DRV R. Strahlenschutzrecht: Strahlenschutzgesetz und Strahlenschutzverordnung. DRV. 2019
  • 2 Schwaiger M, Dinkelborg L, Schweinfurth H. From morphological imaging to molecular targeting: implications to preclinical development. New York: Springer Science & Business Media; 2004
  • 3 Kranz M, Sattler B, Wüst N. et al. Evaluation of the enantiomer specific biokinetics and radiation doses of [18F] fluspidine – A new tracer in clinical translation for imaging of σ1 receptors. Molecules 2016; 21: 1164
  • 4 Miyaoka RS, Lehnert AL. Small animal PET: a review of what we have done and where we are going. Phys Med Biol 2020; 65: 24TR04
  • 5 Sattler B, Kranz M, Wenzel B. et al. Preclinical incorporation dosimetry of [18F] FACH—a novel 18F-labeled MCT1/MCT4 lactate transporter inhibitor for imaging cancer metabolism with PET. Molecules 2020; 25: 2024
  • 6 Zaidi H. Molecular Imaging of Small Animals: Instrumentation and Applications. New York: Springer; 2014
  • 7 Hofheinz F, Langner J, Petr J. et al. A method for model-free partial volume correction in oncological PET. EJNMMI Res 2012; 2: 16
  • 8 Crawford DJ, Richmond CR. Epistemological considerations in the extrapolation of metabolic data from non-humans to humans.[Validity of interspecies extrapolation]. TN (USA): Oak Ridge Associated Universities, Inc; 1980
  • 9 Lathrop KA. Collection and presentation of animal data relating to internally distributed radionuclides. 81. United States: HHS Publ(FDA); 1981
  • 10 Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. TN (United States): Oak Ridge Associated Universities; 1999
  • 11 McParland BJ. Nuclear medicine radiation dosimetry: advanced theoretical principles. New York: Springer Science & Business Media; 2010
  • 12 Kirschner AS, Ice RD, Beierwaltes WH. Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data—reply. J Nucl Med 1975; 16: 248-249
  • 13 Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male. United States: Oak Ridge National Lab., TN (USA); 1987
  • 14 Stabin MG, Xu XG, Emmons MA. et al. RADAR reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry. J Nucl Med 2012; 53: 1807-1813
  • 15 Welsher K, Sherlock SP, Dai H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci 2011; 108: 8943-8948
  • 16 Lin JH. Applications and Limitations of Interspecies Scaling and Extrapolation in Pharmacokinetics. Drug Metab Dispos 1998; 26: 1202 LP-1212
  • 17 Marinelli LD, Quimby EH, Hine GJ. Dosage determination with radioactive isotopes; practical considerations in therapy and protection. Am J Roentgenol Radium Ther 1948; 59: 260-281
  • 18 Quimby EH, Feitelberg S. Radioactive Isotopes in Medicine and Biology. Basic Physics and Instrumentation. Acad Med 1963; 38: 616
  • 19 ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides. Ann ICRP 1995; 71: 25-27
  • 20 MALAMUD H. MIRD primer for absorbed dose calculations. Clin Nucl Med 1989; 14: 723-724
  • 21 Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294-310
  • 22 Stabin M, Farmer A. OLINDA/EXM 2.0: the new generation dosimetry modeling code. 2012
  • 23 Protection R. ICRP publication 103. Ann ICRP 2007; 37: 2
  • 24 Thorne MC. ICRP publication 60: 1990 recommendations of the international commission on radiological protection. Annals of the ICRP 1991; 21: 1-3
  • 25 Zanotti-Fregonara P, Lammertsma AA, Innis RB. Suggested pathway to assess radiation safety of 18F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 2013; 40: 1781-1783
  • 26 Zanotti-Fregonara P, Innis RB. Suggested pathway to assess radiation safety of 11C-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 2012; 39: 544-547
  • 27 ICRP. ICRP publication 62: radiological protection in biomedical research. Ann ICRP. 1992 22. Addendum 1 to publication 53, p. xi
  • 28 Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. 1997: 22-27
  • 29 Zanotti-Fregonara P, Lammertsma AA, Innis RB. 11C dosimetry scans should be abandoned. J Nucl Med 2021; 62: 158-159
  • 30 Tang G, Wang M, Tang X. et al. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F] fluoroethyl)-L-tyrosine as oncologic PET tracer. Appl Radiat Isot 2003; 58: 219-225
  • 31 Pauleit D, Floeth F, Herzog H. et al. Whole-body distribution and dosimetry of O-(2-[18F] fluoroethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging 2003; 30: 519-524
  • 32 ICRP. Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP 2008; 38: annex C
  • 33 Muzic RF, Chandramouli V, Huang H-M. et al. Human radiation dosimetry of 6-[18F]FDG predicted from preclinical studies. Med Phys 2014; 41: 031910
  • 34 Sattler B, Kranz M, Starke A. et al. Internal dose assessment of (–)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med 2014; 55: 1885-1892
  • 35 Kranz M, Sattler B, Tiepolt S. et al. Radiation dosimetry of the α4β2 nicotinic receptor ligand (+)-[18F] flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results. EJNMMI Phys 2016; 3: 1-17
  • 36 Constantinescu CC, Garcia A, Mirbolooki MR. et al. Evaluation of [18F]Nifene biodistribution and dosimetry based on whole-body PET imaging of mice. Nucl Med Biol 2013; 40: 289-294
  • 37 Betthauser TJ, Hillmer AT, Lao PJ. et al. Human biodistribution and dosimetry of [18F]nifene, an α4β2* nicotinic acetylcholine receptor PET tracer. Nucl Med Biol 2017; 55: 7-11
  • 38 Sakata M, Oda K, Toyohara J. et al. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med 2013; 27: 285-296