Subscribe to RSS
DOI: 10.1055/a-1804-8980
Synthesis of Diaza[5]helicenes by ortho,ortho′-Fusion of ortho-Terphenyls
We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, PO 463/17-1).

Dedicated to Dieter Seebach on the occasion of his 85th birthday
Abstract
Double ortho-fusion in suitably substituted ortho-terphenyls was used for the synthesis of diaza[5]helicenes. Bis(carboxamido)-substituted ortho-terphenyls can be condensed to 5,9- and 6,9-diaza[5]helicenes, where substituents at the 6,10- and 5,10-positions, respectively, are introduced with the carboxamido groups. While a twofold coupling sequence with intermediate protection of one amino group has to be used for 5,9-diaza[5]helicenes, a more concise sequence avoiding the protection leads to 6,9-diaza[5]helicenes. The simple heating of ortho,ortho′-diazidoterphenyls furnishes 5,8-dihydroindolo[2,3-c]carbazoles, i.e., [5]helicenes with alternating benzene and pyrrole rings.
Key words
helicenes - terphenyls - cross-coupling - Suzuki coupling - aromatic compounds - boronates - amides - azidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1804-8980.
- Supporting Information
Publication History
Received: 22 February 2022
Accepted after revision: 22 March 2022
Accepted Manuscript online:
22 March 2022
Article published online:
10 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gingras M. Chem. Soc. Rev. 2013; 42: 968
- 1b Gingras M, Félix G, Peresutti R. Chem. Soc. Rev. 2013; 42: 1007
- 1c Gingras M. Chem. Soc. Rev. 2013; 42: 1051
- 2 Moss GP. Pure Appl. Chem. 1996; 68: 2193
- 3a Goedicke C, Stegemeyer H. Tetrahedron Lett. 1970; 11: 937
- 3b Barroso J, Cabellos JL, Pan S, Murillo F, Zarate X, Fernandez-Herrera MA, Merino G. Chem. Commun. 2018; 54: 188
- 4 Herzog S, Hinz A, Breher F, Podlech J. Org. Biomol. Chem. 2022; 20: 2873
- 5 Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
- 6a Reetz MT, Beuttenmüller EW, Goddard R. Tetrahedron Lett. 1997; 38: 3211
- 6b Reetz MT, Sostmann S. J. Organomet. Chem. 2000; 603: 105
- 7a Thongpanchang T, Paruch K, Katz TJ, Rheingold AL, Lam K.-C, Liable-Sands L. J. Org. Chem. 2000; 65: 1850
- 7b Wachsmann C, Weber E, Czugler M, Seichter W. Eur. J. Org. Chem. 2003; 2863
- 7c Nakano D, Hirano R, Yamaguchi M, Kabuto C. Tetrahedron Lett. 2003; 44: 3683
- 8 Šámal M, Míšek J, Stará IG, Starý I. Collect. Czech. Chem. Commun. 2009; 74: 1151
- 9 Takenaka N, Sarangthem RS, Captain B. Angew. Chem. Int. Ed. 2008; 47: 9708
- 10 Takenaka N, Chen J, Captain B, Sarangthem RS, Chandrakumar A. J. Am. Chem. Soc. 2010; 132: 4536
- 11a Lerman LS. J. Mol. Biol. 1961; 3: 18
- 11b Wilson WD, Jones RL. Adv. Pharmacol. Chemother. 1981; 18: 177
- 11c Mukherjee A, Sasikala WD. Adv. Protein Chem. Struct. Biol. 2013; 92: 1
- 11d Di Micco S, Bassarello C, Bifulco G, Riccio R, Gomez-Paloma L. Angew. Chem. Int. Ed. 2006; 45: 224
- 12 Hurley LH. Nat. Rev. Cancer 2002; 2: 188
- 13a Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK. J. Am. Chem. Soc. 1989; 111: 3051
- 13b Das S, Kumar GS. J. Mol. Struct. 2008; 872: 56
- 13c Grycová L, Dostál J, Marek R. Phytochemistry 2007; 68: 150
- 14 Passeri R, Aloisi GG, Elisei F, Latterini L, Caronna T, Fontana F, Sora IN. Photochem. Photobiol. Sci. 2009; 8: 1574
- 15a Staab HA, Saupe T. Angew. Chem. Int. Ed. Engl. 1988; 27: 865
- 15b Staab HA, Zirnstein MA, Krieger C. Angew. Chem. Int. Ed. Engl. 1989; 28: 86
- 15c Roithová J, Schröder D, Míšek J, Stará IG, Starý I. J. Mass Spectrom. 2007; 42: 1233
- 16 Saleh N, Shen C, Crassous J. Chem. Sci. 2014; 5: 3680
- 17a Bazzini C, Brovelli S, Caronna T, Gambarotti C, Giannone M, Macchi P, Meinardi F, Mele A, Panzeri W, Recupero F, Sironi A, Tubino R. Eur. J. Org. Chem. 2005; 1247
- 17b Dumitrascu F, Dumitrescu DG, Aron I. ARKIVOC 2010; (i): 1
- 17c Starý I, Stará IG. Targets Heterocycl. Syst. 2017; 21: 23
- 18a Staab HA, Diehm M, Krieger C. Tetrahedron Lett. 1994; 35: 8357
- 18b Harrowven DC, Guy IL, Nanson L. Angew. Chem. Int. Ed. 2006; 45: 2242
- 19 Míšek J, Teplý F, Stará IG, Tichý M, Šaman D, Císařová I, Vojtíšek P, Starý I. Angew. Chem. Int. Ed. 2008; 47: 3188
- 20 Storch J, Čermák J, Karban J, Císařová I, Sýkora J. J. Org. Chem. 2010; 75: 3137
- 21 Caronna T, Gabbiadini S, Mele A, Recupero F. Helv. Chim. Acta 2002; 85: 1
- 22 Weiß A, Podlech J. Eur. J. Org. Chem. 2019; 6697
- 23 Liu C.-Y, Gavryushin A, Knochel P. Chem. Asian J. 2007; 2: 1020
- 24 Sienkowska M, Benin V, Kaszynski P. Tetrahedron 2000; 56: 165
- 25 Li R, Nakashima T, Galangau O, Iijima S, Kanazawa R, Kawai T. Chem. Asian J. 2015; 10: 1725
- 26 Wetzel A, Gagosz F. Angew. Chem. Int. Ed. 2011; 50: 7354
- 27 Gauthier D, Dodd RH, Dauban P. Tetrahedron 2009; 65: 8542
- 28 Tsuchiya K, Sakaguchi K, Kasuga H, Kawakami A, Taka H, Kita H, Ogino K. Polymer 2010; 51: 616
- 29 Kong C, Driver TG. Org. Lett. 2015; 17: 802
- 30 Dunetz JR, Xiang Y, Baldwin A, Ringling J. Org. Lett. 2011; 13: 5048
- 31 Lin S, Danishefsky SJ. Angew. Chem. Int. Ed. 2001; 40: 1967
- 32 Altemöller M, Gehring T, Cudaj J, Podlech J, Goesmann H, Feldmann C, Rothenberger A. Eur. J. Org. Chem. 2009; 2130
- 33 Tidwell JH, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 11797
- 34a Hendrickson JB, Schwartzman SM. Tetrahedron Lett. 1975; 16: 277
- 34b Xi J, Dong Q.-L, Liu G.-S, Wang S, Chen L, Yao Z.-J. Synlett 2010; 1674
- 35 Laguzza BC, Ganem B. Tetrahedron Lett. 1981; 22: 1483
- 36 Hermann S, Wagenknecht H.-A. J. Pept. Sci. 2017; 23: 563
- 37 Huang X, Hu M, Zhao X, Li C, Yuan Z, Liu X, Cai C, Zhang Y, Hu Y, Chen Y. Org. Lett. 2019; 21: 3382
- 38 Benz S, Mareda J, Besnard C, Sakai N, Matile S. Chem. Sci. 2017; 8: 8164
- 39 Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chem. Rev. 2018; 118: 9058
- 40a Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha D.-G, Wu T, Markopoulos G, Jeon S, Kang H, Miyazaki H, Numata M, Kim S, Huang W, Hong SI, Baldo M, Adams RP, Aspuru-Guzik A. Nat. Mater. 2016; 15: 1120
- 40b Suzuki T, Sakano Y, Tokimizu Y, Miura Y, Katoono R, Fujiwara K, Yoshioka N, Fujii N, Ohno H. Chem. Asian J. 2014; 9: 1841
- 41 Carvajal-Miranda Y, Pérez-Salazar R, Varela JA. J. Heterocycl. Chem. 2016; 53: 762
- 42a Yudina LN, Bergman J. Tetrahedron 2003; 59: 1265
- 42b Sankar E, Raju P, Karunakaran J, Mohanakrishnan AK. J. Org. Chem. 2017; 82: 13583
- 43a Bunyan PJ, Cadogan JI. G. J. Chem. Soc. 1963; 42
- 43b Tsang WC. P, Munday RH, Brasche G, Zheng N, Buchwald SL. J. Org. Chem. 2008; 73: 7603
- 43c Stokes BJ, Jovanović B, Dong H, Richert KJ, Riell RD, Driver TG. J. Org. Chem. 2009; 74: 3225
- 43d Ullah E, McNulty J, Robertson A. Eur. J. Org. Chem. 2012; 2127
- 43e Ou Y, Jiao N. Chem. Commun. 2013; 49: 3473
- 43f Suzuki C, Hirano K, Satoh T, Miura M. Org. Lett. 2015; 17: 1597
- 43g Yang L, Zhang Y, Zou X, Lu H, Li G. Green Chem. 2018; 20: 1362
- 44 Seven Ö, Bolte M, Lerner H.-W, Wagner M. Organometallics 2014; 33: 1291
- 45 Baccalini A, Vergura S, Dolui P, Maiti S, Dutta S, Maity S, Khan FF, Lahiri GK, Zanoni G, Maiti D. Org. Lett. 2019; 21: 8842
- 46 Yang L, Li H, Zhang H, Lu H. Eur. J. Org. Chem. 2016; 5611
- 47 Abramovitch RA, Kyba EP, Scriven EF. V. J. Org. Chem. 1971; 36: 3796
- 48 Jo MY, Park SS, Kim JH. Synth. Met. 2012; 162: 70
- 49 Couch ED, Auvil TJ, Mattson AE. Chem. Eur. J. 2014; 20: 8283