Subscribe to RSS
DOI: 10.1055/a-1813-7319
Catalytic Oxidations with ortho-Substituted Modified IBXs
Supported through funding by the Science and Engineering Research Board (SERB; Grant Number: SB/S2/JCB-52/2014), New Delhi, India.
Abstract
o-Iodoxybenzoic acid (IBX) is an oxidation reagent that has surged into prominence in the last two decades. It is cost-effective, environmentally benign, and readily prepared from o-iodobenzoic acid. However, its insolubility in common organic solvents and explosive attributes upon impact and heating are debilitating disadvantages. The development of modified IBXs (mIBXs) that exhibit improved solubility and enhanced reactivity, and obviate explosive attributes by judicious manipulation of the structure of IBX has been an incessant endeavor. In this account, common organic solvent-soluble mIBXs developed in our research group are collated with a discussion of the rationale underlying the design principles. Steric build-up around the iodoxolone moiety that is responsible for strong intermolecular interactions within the crystal lattice of IBX constitutes the key consideration in the design and development of modified λ5-iodanes that are reactive and sparingly soluble in common organic solvents. In situ generation of mIBXs from precursor iodo-acids in the presence of Oxone® permits their employment as organocatalysts for facile oxidative transformations. Reactive mIBXs generated in situ from precursor modified iodo-acids (mIAs, II) in the presence of Oxone® may offer unrivaled prospects for cost-effective oxidations. Applications of mIBXs, generated in situ or otherwise, for efficient oxidations are consolidated.
1 Introduction
2 Design and Synthesis of Modified IBXs and their Precursors Iodo-Acids
3 Catalytic Oxidations with Modified IBXs
3.1 Oxidation of Alcohols
3.2 Oxidation of 1,2-Diols
3.3 Conversion of Diols into Lactones
3.4 One-Pot Oxidative Cleavage of Olefins
3.5 One-Pot Transformation of Olefins into α-Bromo- and α-Azidoketones
4 Conclusions
Publication History
Received: 07 February 2022
Accepted after revision: 30 March 2022
Accepted Manuscript online:
31 March 2022
Article published online:
21 June 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Parra A. Chem. Rev. 2019; 119: 12033
- 2 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 3 Hartmann C, Meyer V. Ber. Dtsch. Chem. Ges. 1893; 26: 1727
- 4 Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
- 5 Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 6 Katritzky AR, Duell BL, Gallos JK, Durst HD. Magn. Reson. Chem. 1989; 27: 1007
- 7 Katritzky AR, Savage GP, Palenik GJ, Zhang Z, Durst HD. J. Chem. Soc., Perkin. Trans. 2 1990; 1657
- 8 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
- 9 Frigerio M, Santagostino M. Tetrahedron. Lett. 1994; 35: 8019
- 10 De Munari S, Frigerio M, Santagostino M. J. Org. Chem. 1996; 61: 9272
- 11 More JD, Finney NS. Org. Lett. 2002; 4: 3001
- 12 Plumb JB, Harper DJ. Chem. Eng. News 1990; 68 (29) 3
- 13 Stevenson PJ, Treacy AB, Nieuwenhuyzen M. J. Chem. Soc., Perkin. Trans. 2 1997; 589
- 14 Koposov AY, Litvinov DN, Zhdankin VV, Ferguson MJ, McDonald R, Tykwinski RR. Eur. J. Org. Chem. 2006; 4791
- 15 Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
- 16 Richardson RD, Zayed JM, Altermann S, Smith D, Wirth T. Angew. Chem. Int. Ed. 2007; 46: 6529
- 17 Thottumkara AP, Vinod TK. Tetrahedron Lett. 2002; 43: 569
- 18 Kommreddy A, Bowsher MS, Gunna MR, Botha K, Vinod TK. Tetrahedron Lett. 2008; 49: 4378
- 19 Zhdankin VV, Nemykin VN, Karimov RR, Kazhkenov Z.-G. Chem. Commun. 2008; 6131
- 20 Cui L.-Q, Dong Z.-L, Liu K, Zhang C. Org. Lett. 2011; 13: 6488
- 21 Moorthy JN, Singhal N, Senapati K. Tetrahedron Lett. 2008; 49: 80
- 22 Moorthy JN, Senapati K, Parida KN. J. Org. Chem. 2010; 75: 8416
- 23 Moorthy JN, Senapati K, Parida KN, Jhulki S, Sooraj K, Nair NN. J. Org. Chem. 2011; 76: 9593
- 24 Miura T, Nakashima K, Tada N, Itoh A. Chem. Commun. 2011; 47: 1875
- 25 Mülbaier M, Giannis A. Angew. Chem. Int. Ed. 2001; 40: 4393
- 26 Ladziata U, Willging J, Zhdankin VV. Org. Lett. 2006; 8: 167
- 27 Jang H.-S, Kim Y.-H, Kim Y.-O, Lee S.-M, Kim J.-W, Chung W.-J, Lee Y.-S. J. Ind. Eng. Chem. 2014; 20: 29
- 28 Moorthy JN, Singhal N, Mal P. Tetrahedron Lett. 2004; 45: 309
- 29 Su JT, Goddard WA. J. Am. Chem. Soc. 2005; 127: 14146
- 30 Seth S, Jhulki S, Moorthy JN. Eur. J. Org. Chem. 2013; 2445
- 31 Mishra AK, Moorthy JN. Org. Chem. Front. 2017; 4: 343
- 32 Frigerio M, Santagostino M, Sputore S, Palmisano G. J. Org. Chem. 1995; 60: 7272
- 33 Corey EJ, Palani A. Tetrahedron Lett. 1995; 36: 7945
- 34 Ochiai M, Takaoka Y, Masaki Y, Nagao Y, Shiro M. J. Am. Chem. Soc. 1990; 112: 5677
- 35a Thottumkara AP, Bowsher MS, Vinod TK. Org. Lett. 2005; 7: 2933
- 35b Schulze A, Giannis A. Synthesis 2006; 257
- 36 Moorthy JN, Parida KN. J. Org. Chem. 2014; 79: 11431
- 37 Jhulki S, Seth S, Mondal M, Moorthy JN. Tetrahedron 2014; 70: 2286
- 38 Chandra A, Parida KN, Moorthy JN. Tetrahedron 2017; 73: 5827
- 39a Hussain H, Green IR, Ahmed I. Chem. Rev. 2013; 113: 3329
- 39b Solomon EI, Stahl SS. Chem. Rev. 2018; 118: 2299
- 39c Wood MH, Hailwood M, Koutelos K. Process Saf. Environ. Prot. 2021; 153: 278
- 40 Moorthy JN, Natarajan P, Venkatakrishnan P, Huang D.-F, Chow TJ. Org. Lett. 2007; 9: 5215
- 41 Moorthy JN, Venkatakrishnan P, Natarajan P, Huang D.-F, Chow TJ. J. Am. Chem. Soc. 2008; 130: 17320
- 42 Kopylovich MN, Ribeiro AP. C, Alegria EC. B. A, Martins NM. R, Martins LM. D. R. S, Pombeiro AJ. L. Adv. Organomet. Chem. 2015; 63: 91
- 43 Cherepakhin V, Williams TJ. Synthesis 2021; 53: 1023
- 44 Travis BR, Sivakumar M, Hollist GO, Borhan B. Org. Lett. 2003; 5: 1031
- 45 Moorthy JN, Singhal N, Venkatakrishnan P. Tetrahedron Lett. 2004; 45: 5419
- 46 Achar TK, Maiti S, Mal P. RSC Adv. 2014; 4: 12834
- 47 Alam MT, Maiti S, Mal P. Beilstein J. Org. Chem. 2018; 14: 2396
- 48 Parida KN, Jhulki S, Mandal S, Moorthy JN. Tetrahedron 2012; 68: 9763
- 49 Moorthy JN, Singhal N, Senapati K. Org. Biomol. Chem. 2007; 5: 767
- 50 Sartori SK, Diaz MA. N, Diaz-Muñoz G. Tetrahedron 2021; 84: 132001
- 51 Oderinde MS, Hunter HN, Bremner SW, Organ MG. Eur. J. Org. Chem. 2012; 175
- 52 Murphy SK, Dong VM. J. Am. Chem. Soc. 2013; 135: 5553
- 53 Guillerm D, Linstrumelle G. Tetrahedron Lett. 1985; 26: 3811
- 54 Smith AB, Schow SR, Bloom JD, Thompson AS, Winzenberg KN. J. Am. Chem. Soc. 1982; 104: 4015
- 55 Parida KN, Moorthy JN. J. Org. Chem. 2015; 80: 8354
- 56 Huang L, Jiang H, Qi C, Liu X. J. Am. Chem. Soc. 2010; 132: 17652
- 57 Clayden J, Greeves N, Warren SG. Organic Chemistry 2012
- 58 Bailey PS. Chem. Rev. 1958; 58: 925
- 59 Travis BR, Narayan RS, Borhan B. J. Am. Chem. Soc. 2002; 124: 3824
- 60 Yun D, Ayla EZ, Bregante DT, Flaherty DW. ACS Catal. 2021; 11: 3137
- 61 Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJ. L, Xiao J. J. Am. Chem. Soc. 2021; 143: 10005
- 62 Parida KN, Moorthy JN. Tetrahedron 2014; 70: 2280
- 63 Zhu W, Ford WT. J. Org. Chem. 1991; 56: 7022
- 64 De Kimpe N, Verhé R. α-Haloketones, α-Haloaldehydes and α-Haloimines. John Wiley & Sons; New York: 1988
- 65 Erian A, Sherif S, Gaber H. Molecules 2003; 8: 793
- 66 Deshmukh S, Chaudhari K, Akamanchi K. Synlett 2011; 81
- 67 Rammurthy B, Swamy P, Naresh M, Srujana K, Durgaiah C, Gajula KS, Narender N. New J. Chem. 2017; 41: 3710
- 68 Arava S, Kumar JN, Maksymenko S, Iron MA, Parida KN, Fristrup P, Szpilman AM. Angew. Chem. Int. Ed. 2017; 56: 2599
- 69 Macharla AK, Nappunni RC, Marri MR, Pereka S, Nama N. Tetrahedron Lett. 2012; 53: 191
- 70 Moorthy JN, Senapati K, Singhal N. Tetrahedron Lett. 2009; 50: 2493
- 71 Moorthy JN, Singhal N, Senapati K. Tetrahedron Lett. 2006; 47: 1757