RSS-Feed abonnieren
DOI: 10.1055/a-1814-8440
Xenotransplantate vom Schwein – ist das Ende des Organmangels in Sicht?
Xenografts from Pigs – When Comes Organ Shortage to an End?Zusammenfassung
Unter „Xenotransplantation“ wird die Übertragung von funktionsfähigen Zellen, Geweben oder Organen zwischen verschiedenen Spezies verstanden, insbesondere von Schweinen auf den Menschen. In den meisten Industrieländern klafft eine große Lücke zwischen der Anzahl geeigneter Spenderorgane und der Anzahl benötigter Transplantate. Weltweit können nur etwa 10% des Organbedarfs durch Spenden gedeckt werden. Eine erfolgreiche Xenotransplantation könnte diesen Mangel mildern oder sogar weitgehend vermeiden. Das Schwein wird aus verschiedenen Erwägungen heraus als am besten geeignete Spenderspezies angesehen. Bei einer Übertragung porziner Organe auf Primaten treten verschiedene immunologisch bedingte Abstoßungsreaktionen auf, die das übertragene Organ innerhalb kurzer Zeit zerstören können, wie die HAR (hyperakute Abstoßung), die AVR (akute vaskuläre Abstoßung) und die spätere zelluläre Abstoßung. Diese Abstoßungsreaktionen müssen durch genetische Modifikationen im Schwein und eine geeignete immunsuppressive Behandlung des Empfängers kontrolliert werden. Dazu müssen Tiere mit mehrfachen genetischen Veränderungen produziert und im Hinblick auf ihre Eignung für eine erfolgreiche Xenotransplantation geprüft werden. Inzwischen können die HAR und auch die AVR durch Knockouts von antigenen Oberflächenepitopen (z. B. αGal [Galaktose-α1,3-Galaktose]) und transgene Expression humaner Gene mit antiinflammatorischer, antiapoptotischer oder antikoagulativer Wirkung zuverlässig kontrolliert werden. Nach orthotopen Transplantationen in nicht humane Primaten konnten inzwischen mit Schweineherzen Überlebensraten von bis zu 264 Tagen und mit porzinen Nieren von 435 Tagen erzielt werden. Eine Übertragung pathogener Erreger auf den Empfänger kann bei Einhaltung einschlägiger Hygienemaßnahmen ausgeschlossen werden. PERV (porzine endogene Retroviren) können durch RNA-(Ribonukleinsäure-)Interferenz oder Gen-Knockout ausgeschaltet werden. Sie stellen damit kein Übertragungsrisiko für den Empfänger mehr dar. Anfang 2022 wurde in Baltimore (USA) ein Schweineherz mit 10 genetischen Modifikationen auf einen Patienten mit schwerem Herzleiden übertragen, mit dem der Empfänger 2 Monate offenbar ohne größere Probleme lebte. Es wird erwartet, dass Xenotransplantate vom Schwein in absehbarer Zeit zur klinischen Anwendungsreife kommen werden. Dazu werden klinische Versuche zur systematischen Erfassung aller Auswirkungen solcher Transplantate auf den Patienten sowie geeignete rechtliche und finanzielle Rahmenbedingungen benötigt.
Abstract
Xenotransplantation entails the transplantation of functional cells, tissue, or whole organs between different species, in particular from animals, such as the domestic pig, to human patients. In most industrialized countries there is a growing gap between the number of suitable donor organs and the number of needed transplants. Globally, only ≈10% of the organs in need can be met by donation. A successful xenotransplantation could potentially overcome this ever growing shortage of suitable organs. The domestic pig has been identified as the best suited donor species due to a number of specific advantages. When transplanting porcine organs into primates, several immunological rejection responses are induced that would destroy the xenograft within minutes or few hours, incl. the hyperacute rejection response (HAR), the acute vascular rejection (AVR), and later the cellular rejection. The primary goal is to control the HAR and the AVR by genetic modification of the donor pigs and an appropriate immune suppressive treatment of the recipient. This requires production of multi-transgenic pigs and extensive testing of their suitability for successful xenotransplantation. Intensive research around the globe has demonstrated that both, the HAR and AVR, can be reliably controlled via knockouts of specific antigenic surface epitopes (f.ex. galactose-α1,3 galactose [α1,3 Gal]) and simultaneous transgenic expression of human genes with anti-inflammatory, anti-apoptotic and anti-coagulative function. Following orthotopic porcine organ transplantation into non-human primates, maximum survival rates of 264 days (heart) and 435 days (kidney) could be achieved. The potential risk of transmission of pathogens by the xenograft to the recipient can be eliminated by applying strict hygienic measures. Porcine endogenous retroviruses (PERV) can be eliminated by specific breeding programs, RNA-interference, or gene knockout, so that they do not present a risk for disease transmission. In january 2022, it was reported that the first ever pig heart from a donor pig with 10 genetic modifications had been transplanted into a human patient with severe heart disease; the patient lived for 2 months without major problems. Thus, it is expected that porcine xenografts will be used in a clinical setting within a foreseeable period of time. This requires clinical trials to systematically analyse the effects of such xenotransplants on the patient and will also need a suitable legal and financial framework.
Schlüsselwörter
Organmangel - genetisch veränderte Schweine - spezifische Abstoßungsreaktionen - porcine endogene Retroviren - Xenotransplantation - nicht humane PrimatenKey words
organ shortage - genetically modified pigs - specific immune rejection responses - porcine endogenous retroviruses - PERV - xenotransplantation - non-human primatesPublikationsverlauf
Artikel online veröffentlicht:
16. November 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 WHO-GODT. The global database on donation and transplantation. Im Internet: http://www.transplant-observatory.org; (Stand: Juli 2022)
- 2 Deutsche Stiftung Organtransplantation. Statistiken zur Organspende in Deutschland. Im Internet: https://dso.de/organspende/statistiken-berichte/organspende; (Stand: Juli 2022)
- 3 Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res 2015; 24: 381-396
- 4 Niemann H. Haltung und Nutzung von Schweinen im Kontext der Xeno-transplantation. In: Sautermeister J, Hrsg. Tierische Organe in menschlichen Körpern; Biomedizinische, kulturwissenschaftliche, theologische und ethische Zugänge zur Xenotransplantation. Paderborn: Mentis; 2018: 87-94
- 5 Petersen B, Lucas-Hahn A, Oropeza M. et al. Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 2008; 10: 355-362
- 6 Niemann H, Lucas-Hahn A, Petersen B. The methodologies and application potential of genetically modified farm animals. Compr Biotechnol 2019; 439: 466-480
- 7 Petersen B, Carnwath JW, Niemann H. The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 2009; 32: 91-105
- 8 Lu T, Yang B, Wang R. et al. Xenotransplantation: current status in preclinical research. Front Immunol 2020; 10: 3060 10.3389/fimmu.2019.03060
- 9 Petersen B, Ramackers W, Lucas-Hahn A. et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 2011; 18: 355-368
- 10 Ahrens HE, Petersen B, Ramackers W. et al. Kidneys from 1,3 galactosyltransferase knockout/human heme oxygenase-1/human A20 transgenic pigs are protected from rejection during ex vivo perfusion with human blood. Transplantation Direct 2015; e23 10.1097/TXD.0000000000000533
- 11 Mohiuddin MM, Goerlich CE, Singh AK. et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation 2022; 29: e12744 10.1111/xen.12744
- 12 Petersen B, Ramackers W, Tiede A. et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 2009; 16: 486-495
- 13 Ahrens HE, Petersen B, Herrmann D. et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant 2015; 15: 1407-1414
- 14 Iwase H, Hara H, Ezzelarab M. et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 2017; 24: e12293 10.1111/xen.12293 170
- 15 Fischer K, Schnieke A. Xenotransplantation becoming reality. Transgenic Res 2022; 31: 391-398 10.1007/s11248-022-00306-w
- 16 Hara H, Witt W, Crossley T. et al. Human dominant-negative class II transactivator transgenic pigs – effect on the human anti-pig T-cell immune response and immune status. Immunology 2013; 140: 39-46
- 17 Sake HJ, Frenzel A, Lucas-Hahn A. et al. Possible detrimental effects of beta-2–microglobulin knockout in pigs. Xenotransplantation 2019; 00: e12525
- 18 Hein R, Sake HJ, Pokoyski C. et al. Triple (GGTA1, CMAH, B2M) modified pigs expressing an SLA class-Ilow phenotype – effects on immune status and susceptibility to human immune. Am J Transplant 2019; 20: 988-998
- 19 Buermann A, Petkov S, Petersen B. et al. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018; 25: e12387 10.1111/xen.12387
- 20 Niemann H, Verhoeyen E, Wonigeit K. et al. CMV early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 2001; 72: 1896-1906
- 21 Fischer K, Kraner-Scheiber S, Petersen B. et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep 2016; 6: 29081 10.1038/srep29081
- 22 Niemann H, Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 2016; 25: 361-374
- 23 Hauschild J, Petersen B, Santiago Y. et al. Efficient generation of a biallelic knockout in pig using zinc-finger nucleases. Proc Natl Acad Sci USA 2011; 108: 12013-12017 10.1073/pnas.1106422108
- 24 Petersen B, Frenzel A, Lucas-Hahn A. et al. Production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 2016; 23: 338-346
- 25 Ramackers R, Friedrich L, Tiede A. et al. Effects of pharmacological intervention on coagulopathy and organ function in xenoperfused kidneys. Xenotransplantation 2008; 15: 46-55 10.1111/j.1399-3089.2008.00443.x
- 26 Cooper DK, Satyananda V, Ekser B. et al. Progress in pig-to-non-human primate transplantation models. (1998–2013): a comprehensive review of the literature. Xenotransplantation 2014; 21: 397-419 10.1111/xen.1212
- 27 Cooper DKC, Gaston R, Eckhoff D. et al. Xenotransplantation – the current status and prospects. Br Med Bull 2018; 125: 5-14 10.1083/bmb/Idx043
- 28 Mohiuddin MM, Corcoran PC, Singh AK. et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am J Transplant 2012; 12: 763-771 10.1111/j.1600-6143.2011.03846.x167
- 29 Mohiuddin MM, Singh AK, Corcoran PC. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for longterm survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 2016; 7: 11138 10.1038/ncomms11138
- 30 Byrne GW, Du Z, Sun Z. et al. Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 2011; 18: 14-27 10.1111/j.1399-3089.2010.00620.x 168
- 31 Längin M, Mayr T, Reichart B. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018; 564: 430-433
- 32 Higginbotham L, Mathews D, Breeden CA. et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 2015; 22: 221-230 10.1111/xen.12166
- 33 Iwase H, Liu H, Wijkstrom M. et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation 2015; 22: 302-309 10.1111/xen.12174 169
- 34 Adams AB, Kim SC, Martens GR. et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg 2018; 268: 564-573 10.1097/SLA.0000000000002977 125
- 35 Kim SC, Mathews DV, Breeden CP. et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019; 19: 2174-2185 10.1111/ajt.15329163
- 36 Zhang DRX, Li X, Yang Z. et al. A review of pig liver xenotransplantation: current problems and recent progress. Xenotransplantation 2019; 26: e12497 10.1111/xen.12497
- 37 Watanabe H, Ariyoshi Y, Pomposelli T. et al. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to>60 days and promotes increased porcine lung transplant survival. Xenotransplantation 2020; 27: e12552 10.1111/xen.12552
- 38 Cebotari S, Tudorache I, Ciubotaru A. et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults early report. Circulation 2011; 124: S115-S123 10.116/CIRCULATIONAHA.110.012161
- 39 Neumann A, Cebotari S, Tudorache I. et al. Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech Eng 2013; 58: 453-456 10.1515/bmt.2012-0115
- 40 Ramm R, Niemann H, Petersen B. et al. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies. Bas Res Cardiol 2016; 111: 39 10.1007/s00395-016-0560-7
- 41 Ramm R, Goecke T, Koehler P. et al. Immunological and functional features of decellularized xenogeneic heart valves after transplantation into GGTA1-KO pigs. Regen Biomater 2021; 8: rbab036 10.1093/rb/rbab03
- 42 International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels, Beldium: International Diabetes Federation; 2021
- 43 Bornstein SR, Ludwig B, Steenblock C. Progress in islet transplantation is more important than ever. Nat Rev Endocrinol 2022; 18: 389-390 10.1038/s41574-022-00689-0
- 44 Reichart B, Niemann H, Chavakis T. et al. Xenotransplantation of porcine islet cells as a potential option for the treatment of type 1 diabetes in the future. Horm Metab Res 2015; 47: 31-35
- 45 Shin JS, Kim JM, Kim JS et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant 2015; 15: 2837–2850. DOI: 10.1111/ajt.13345
- 46 Hawthorne WJ, Salvaris EJ, Chew YC et al. Xenotransplantation of genetically modified neonatal pig islets cures diabetes in baboons. Front Immunol 2022; 13: 898948. DOI: 10.3389/fimmu.2022.898948
- 47 Oliveira MC, Valdivia E, Verboom M. et al. Generating low immunogenic pig pancreatic islet cell clusters for xenotransplantation. J Cell Mol Med 2020; 24: 5070-5081
- 48 Patience C, Switzer WM, Takeuchi Y. et al. Multiple groups of novel retroviral genomes in pigs and related species. J Virol 2001; 75: 2771-2775
- 49 Kaulitz D, Mihica D, Dorna J. et al. Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J Virol Meth 2011; 175: 60-65
- 50 Dieckhoff B, Kessler B, Jobst D. et al. Distribution and expression of porcine endogenous retroviruses in multitransgenic pigs generated for xenotransplantation. Xenotransplantation 2009; 16: 64-73
- 51 Dieckhoff B, Karlas A, Hofmann A. et al. Inhibiton of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch Virol 2007; 152: 629-634
- 52 Dieckhoff B, Petersen B, Kues WA. et al. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008; 15: 36-45
- 53 Semaan M, Kaulitz D, Petersen B. et al. Long-term effects of PERV-specific RNA interference in transgenic pigs. Xenotransplantation 2012; 19: 112-121
- 54 Niu D, Jiang Wei H, Lin L. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017; 6357: 1303-1307 10.1126/science.aan4187
- 55 Fishman JA. Infectious disease risks in xenotransplantation. Am J Transplant 2018; 18: 1857-1864 10.1111/ajt.14725
- 56 Reardon S. First pig-to-human heart transplant: What can scientists learn?. Nature 2022; 601: 305-306
- 57 Griffith BP, Goerlich CE, Singh AK. et al. Genetically modified porcine-to-human cardiac xenotransplantation. New Engl J Med 2022; 387: 35-44 10.1056/NEJMoa2201422
- 58 Regalado A. The gene-edited pig heart given to a dying patient war infected with a pig virus. MIT Biotechnol News 2022. Im Internet: http://reachmd.curatasite.com/articles/share/2524197/(Stand: 12.09.2022)
- 59 Denner J. The porcine cytomegalovirus (PCMV) will not stop xenotransplantation. Xenotransplantation 2022; 29: e12763 10.1111/xen.12763
- 60 Cooper DKC, Pierson RN. The future of cardiac xenotransplantation. Nat Rev Cardiol 2022; 19: 281-282
- 61 Montgomery RA, Stern JM, Lonze BE et al. Results of two cases of pig-to-human kidney transplantation. N Engl J Med 2022; 386: 1889–1898. DOI: 10.1056/NEJMoa2120238
- 62 Porrett PM, Orandi BJ, Kumar V. et al. First clinical grade kidney xenotransplant using a human decedent model. Am J Transplant 2022; 22: 1037-1053 10.1111/ajt.16930
- 63 Reardon S. First pig kidneys transplanted into people: What scientists think. Nature 2022; 605: 597-598
- 64 Cooper DKC, Hara H. „You cannot stay in the laboratory forever“: taking pig kidney xenotransplantation from the laboratory to the clinic. EBiomedicine 2021; 71: 103562 10.1016/ebiom.2021.103562
- 65 Sautermeister J. Hrsg. Tierische Organe in menschlichen Körpern; Biomedizinische, kulturwissenschaftliche, theologische und ethische Zugänge zur Xenotransplantation. Paderborn: Mentis; 2018
- 66 Cengiz N, Wareham CS. Ethical considerations in xenotransplantation: a review. Curr Op Org Transplant 2020; 25: 483-488 10.1097/mot.0000000000000796