RSS-Feed abonnieren
DOI: 10.1055/a-1817-1803
Kardiovaskuläre Effekte von Schokolade
Dem mäßigen Genuss dunkler Schokolade werden günstige Effekte auf kardiovaskuläre Erkrankungen zugeschrieben. Dies wird dem hohen Anteil an Polyphenolen und insbesondere Flavonoiden zugeschrieben. Die aktuelle Studienlage zum Einfluss von Kakao auf verschiedene kardiovaskuläre Risikofaktoren und Erkrankungen wird im vorliegenden Artikel dargestellt.
-
Auch wenn die Studienlage aktuell uneinheitlich ist, ergeben sich Hinweise, dass ein moderater Konsum von 40–50 g dunkler Schokolade alle 1–2 Tage einen günstigen Einfluss auf verschiedene kardiovaskuläre Erkrankungen haben kann.
-
Das Ausmaß der Effekte scheint von der Höhe des Kakaoanteils abzuhängen und ist in vielen Studien größer im Vergleich zu denen von Milchschokolade oder „weißer“ Schokolade.
-
Die biologische Wirkung der Polyphenole, die in In-vitro-Untersuchungen zu einer Verbesserung des Endothelfunktion führten, könnte vielleicht die beobachteten kardioprotektiven Effekte in den epidemiologischen Studien miterklären.
-
Dunkle Schokolade ist zu empfehlen.
Publikationsverlauf
Artikel online veröffentlicht:
18. März 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Statista. Pro-Kopf-Absatz von Kaffee in ausgewählten Ländern weltweit im Jahr 2021 (in Kilogramm). Statista 2021 Zugriff am 27. Januar 2024 unter: https://de.statista.com/statistik/daten/studie/199898/umfrage/konsum-von-kaffee-in-europa/
- 2 Bundesregierung. Koffein: Die Dosis macht’s. In; Deutscher Bundestag. Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Nicole Maisch, Kordula Schulz-Asche, Dr. Harald Terpe, weiterer Abgeordneter und der Fraktion BÜNDNIS 90/DIE GRÜNEN. Drucksache 18/9143. 2016 Zugriff am 27. Januar 2024 unter: https://dserver.bundestag.de/btd/18/092/1809251.pdf
- 3 Walter T, Grüttner J, Borggrefe M. et al. Schokolade, Alkohol und Kaffee. Kardiologe 2015; 9: 253-264
- 4 Radtke R. Haupttodesursachen weltweit 2019. Zugriff am 27. Januar 2024 unter: https://de.statista.com/statistik/daten/studie/38995/umfrage/weltweite-odesfaelle-aufgrund-chronischer-krankheiten/
- 5 Henderson JS, Joyce RA, Hall GR. et al. Chemical and archaeological evidence for the earliest cacao beverages. Proc Natl Acad Sci U S A 2007; 104: 18937-18940
- 6 Corti R, Flammer AJ, Hollenberg NK. et al. Cocoa and cardiovascular health. Circulation 2009; 119: 1433-1441
- 7 Rey A. Dictionnaire historique de la Langue française. Paris: Le Dictionaires Le Robert-Sejer; 2011
- 8 Dillinger TL, Barriga P, Escarcega S. et al. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 2000; 130: 2057S-2072S
- 9 Manach C, Scalbert A, Morand C. et al. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79: 727-747
- 10 Adamson GE, Lazarus SA, Mitchell AE. et al. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem 1999; 47: 4184-4188
- 11 Persson IA, Persson K, Hagg S. et al. Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers--a nutrigenomics perspective. J Cardiovasc Pharmacol 2011; 57: 44-50
- 12 Andres-Lacueva C, Monagas M, Khan N. et al. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. J Agric Food Chem 2008; 56: 3111-3117
- 13 Miller KB, Stuart DA, Smith NL. et al. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J Agric Food Chem 2006; 54: 4062-4068
- 14 Joannides R, Haefeli WE, Linder L. et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995; 91: 1314-1319
- 15 Joannides R, Richard V, Haefeli WE. et al. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension 1995; 26: 327-331
- 16 Oemar BS, Tschudi MR, Godoy N. et al. Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 1998; 97: 2494-2498
- 17 Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899-1906
- 18 Celermajer DS, Sorensen KE, Bull C. et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468-1474
- 19 Choi YJ, Kang JS, Park JH. et al. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr 2003; 133: 985-991
- 20 Benito S, Lopez D, Saiz MP. et al. A flavonoid-rich diet increases nitric oxide production in rat aorta. Br J Pharmacol 2002; 135: 910-916
- 21 Wallerath T, Poleo D, Li H. et al. Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 2003; 41: 471-478
- 22 Schnorr O, Brossette T, Momma TY. et al. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys 2008; 476: 211-215
- 23 Waterhouse AL, Shirley JR, Donovan JL. Antioxidants in chocolate. Lancet 1996; 348: 834
- 24 Sanbongi C, Suzuki N, Sakane T. Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 1997; 177: 129-136
- 25 Ottaviani JI, Carrasquedo F, Keen CL. et al. Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in isolated DNA. Arch Biochem Biophys 2002; 406: 203-208
- 26 Innes AJ, Kennedy G, McLaren M. et al. Dark chocolate inhibits platelet aggregation in healthy volunteers. Platelets 2003; 14: 325-327
- 27 Pearson DA, Paglieroni TG, Rein D. et al. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res 2002; 106: 191-197
- 28 Hollenberg NK, Martinez G, McCullough M. et al. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension 1997; 29: 171-176
- 29 Bayard V, Chamorro F, Motta J. et al. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci 2007; 4: 53-58
- 30 Hollenberg NK, Rivera A, Meinking T. et al. Age, renal perfusion and function in island-dwelling indigenous Kuna Amerinds of Panama. Nephron 1999; 82: 131-138
- 31 Mink PJ, Scrafford CG, Barraj LM. et al. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 2007; 85: 895-909
- 32 Buijsse B, Feskens EJ, Kok FJ. et al. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch Intern Med 2006; 166: 411-417
- 33 Ried K, Fakler P, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev 2017; 4: CD008893
- 34 Desch S, Kobler D, Schmidt J. et al. Low vs. higher-dose dark chocolate and blood pressure in cardiovascular high-risk patients. Am J Hypertens 2010; 23: 694-700
- 35 Rostami A, Khalili M, Haghighat N. et al. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler 2015; 11: 21-29
- 36 Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J Hypertens 2014; 32: 2285-2295
- 37 Ettehad D, Emdin CA, Kiran A. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387: 957-967
- 38 Mensink RP, Zock PL, Kester AD. et al. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003; 77: 1146-1155
- 39 Bonanome A, Grundy SM. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 1988; 318: 1244-1248
- 40 Grassi D, Necozione S, Lippi C. et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005; 46: 398-405
- 41 Mursu J, Voutilainen S, Nurmi T. et al. Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans. Free Radic Biol Med 2004; 37: 1351-1359
- 42 Tokede OA, Gaziano JM, Djousse L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis. Eur J Clin Nutr 2011; 65: 879-886
- 43 Mostofsky E, Berg Johansen M, Tjonneland A. et al. Chocolate intake and risk of clinically apparent atrial fibrillation: the Danish Diet, Cancer, and Health Study. Heart 2017; 103: 1163-1167
- 44 Khawaja O, Petrone AB, Kanjwal Y. et al. Chocolate Consumption and Risk of Atrial Fibrillation (from the Physicians' Health Study). Am J Cardiol 2015; 116: 563-566
- 45 Kwok CS, Boekholdt SM, Lentjes MA. et al. Habitual chocolate consumption and risk of cardiovascular disease among healthy men and women. Heart 2015; 101: 1279-1287
- 46 Larsson SC, Akesson A, Gigante B. et al. Chocolate consumption and risk of myocardial infarction: a prospective study and meta-analysis. Heart 2016; 102: 1017-1022
- 47 Ho YL, Nguyen XT, Yan JQ. et al. Chocolate consumption and risk of coronary artery disease: the Million Veteran Program. Am J Clin Nutr 2021; 113: 1137-1144
- 48 Krittanawong C, Narasimhan B, Wang Z. et al. Association between chocolate consumption and risk of coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol 2021; 28: e33-e35
- 49 Golder WA. Systematische Fehler in klinischen Studien. Pneumologe 2017; 14: 106-116
- 50 Flammer AJ, Sudano I, Wolfrum M. et al. Cardiovascular effects of flavanol-rich chocolate in patients with heart failure. Eur Heart J 2012; 33: 2172-2180
- 51 Flammer AJ, Hermann F, Sudano I. et al. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation 2007; 116: 2376-2382
- 52 Steinhaus DA, Mostofsky E, Levitan EB. et al. Chocolate intake and incidence of heart failure: Findings from the Cohort of Swedish Men. Am Heart J 2017; 183: 18-23
- 53 Gong F, Yao S, Wan J. et al. Chocolate Consumption and Risk of Heart Failure: A Meta-Analysis of Prospective Studies. Nutrients 2017; 9: 402
- 54 Dong JY, Iso H, Yamagishi K. et al. Chocolate consumption and risk of stroke among men and women: A large population-based, prospective cohort study. Atherosclerosis 2017; 260: 8-12
- 55 Yuan S, Li X, Jin Y. et al. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 2017; 9: 688
- 56 Loffredo L, Perri L, Catasca E. et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease. J Am Heart Assoc 2014; 3: e001072
- 57 Hammer A, Koppensteiner R, Steiner S. et al. Dark chocolate and vascular function in patients with peripheral artery disease: a randomized, controlled cross-over trial. Clin Hemorheol Microcirc 2015; 59: 145-153