Subscribe to RSS

DOI: 10.1055/a-1817-2248
Spina bifida aperta

Minimalinvasive Operationsverfahren zur vorgeburtlichen Behandlung der Spina bifida haben in den vergangenen 10 Jahren so rasch an Verbreitung gewonnen, dass sie das über knapp 3 Jahrzehnte praktizierte, wesentlich invasivere, offene vorgeburtliche Operationsverfahren zunehmend verdrängen. Ziel dieses Beitrags ist es, interessierten Lesern einen Überblick über das Spektrum der Fehlbildung, ihre pränatale Diagnose und minimal-invasive Therapieoptionen zu geben.
-
Die Fetalchirurgie bietet Spina-bifida-betroffenen Feten – bei geringer maternaler und kindlicher Morbidität – die Chance auf eine nachgeburtlich deutlich besser erhaltene Funktion der Gehfähigkeit sowie auf eine Besserung der begleitenden Gehirnveränderungen, der geistigen Entwicklung und somit der Lebensqualität.
-
Auch die Funktionen von Blase, Enddarm und Schließmuskeln lassen sich vermutlich positiv beeinflussen. Aufgrund der Heterogenität der möglichen Inkontinenzproblematik sowie der in diesem Bereich uneinheitlichen nachgeburtlichen Diagnostik und therapeutischen Angebote sind diese Effekte schwieriger nachweisbar.
-
Nach vorgeburtlicher Diagnose einer SBA müssen betroffene Schwangere heute auf die Möglichkeiten, Chancen und Risiken des vorgeburtlichen Operierens hingewiesen, und, wenn gewünscht, zur Beratung vorgestellt werden. Bei den weiterhin hohen Abbruchraten ist diese Information für betroffene Ungeborene von existenzieller Bedeutung.
Schlüsselwörter
Spina bifida aperta - SBA - Fetalchirurgie - minimal-invasive Chirurgie - Schwangerschaft - FetusPublication History
Article published online:
22 February 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 von Recklinghausen FD. Untersuchungen über die Spina bifida. 1. Berlin: Reimer; 1886
- 2 Tulpi N. Observationum medicarum Libri Tres. Capitum 30 Spina dorsi bifida. 1. Amstelredami: Ludovicum Elzevirium; 1641
- 3 Parker SE, Yazdy MM, Mitchell AA. et al. A description of spina bifida cases and co-occurring malformations, 1976–2011. Am J Med Genet A 2014; 164: 432-440
- 4 Boulet SL, Yang Q, Mai C. et al. Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res A Clin Mol Teratol 2008; 82: 527-532
- 5 Trudell AS, Odibo AO. Diagnosis of spina bifida on ultrasound: Always termination?. Best Pract Res Clin Obstet Gynaecol 2013; 12: 1521-6934
- 6 Bahlmann F, Reinhard I, Schramm T. et al. Cranial and cerebral signs in the diagnosis of spina bifida between 18 and 22 weeks of gestation: a German multicentre study. Prenat Diagn 2015; 35: 228-235
- 7 Centers for Disease Control and Prevention (CDC). Spina bifida and anencephaly before and after folic acid mandate – United States 1995–1996 and 1999–2000. MMWR Morb Mortal Wkly Rep 2004; 53 (17) 362-365
- 8 MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the medical research council vitamin study. Lancet 1991; 338: 131-137
- 9 Agopian AJ, Tinker SC, Lupo PJ. et al. Proportion of neural tube defects attributable to known risk factors. Birth Defects Res A Clin Mol Teratol 2013; 97: 42-46
- 10 Werler MM, Ahrens KA, Bosco JL. et al. A Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol 2011; 21: 842-850
- 11 Hernández-Diáz S, Werler MM, Walker AM. et al. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol 2001; 153: 961-968
- 12 Babcook CJ, Goldstein RB, Filly RA. Prenatally detected fetal myelomeningocele: is karyotype analysis warranted?. Radiology 1995; 194: 491-494
- 13 Azzara A, Rendeli C, Crivello AM. et al. Identification of new candidate genes for spina bifida through exome sequencing. Childs Nerv Syst 2021; 37 (08) 2589-2596
- 14 Sunden B. On the diagnostic value of ultrasound in obstetrics and gynaecology. Acta Obstet Gynecol Scand 1964; 43: 1-191
- 15 Sohn C, Holzgreve W. Ultraschall in Gynäkologie und Geburtshilfe. In: Scharf A. Skelett- und Muskelsystem. Stuttgart: Thieme; 2013: 264-317
- 16 McLone DG, Dias MS. The Chiari II malformation: cause and impact. Childs Nerv Syst 2003; 19: 540-550
- 17 Nicolaides KH, Campbell S, Gabbe SG. et al. Ultrasound screening for spina bifida: cranial and cerebral signs. Lancet 1986; 2: 72-74
- 18 Thomas M. The lemon sign. Radiology 2003; 228: 206-207
- 19 DʼAddario V, Rossi AC, Pinto V. et al. Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinat Med 2008; 36: 330-334
- 20 Bernard JP, Cuckle HS, Stirnemann JJ. et al. Screening for fetal spina bifida by ultrasound examination in the first trimester of pregnancy using fetal biparietal diameter. Am J Obstet Gynecol 2012; 207: 306.e1-5
- 21 Chaoui R, Benoit B, Mitkowska-Wozniak H. et al. Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 2009; 34: 249-252
- 22 Chaoui R, Nicolaides KH. From nuchal translucency to intracranial translucency: towards the early detection of spina bifida. Ultrasound Obstet Gynecol 2010; 35: 133-138
- 23 Buyukkurt S, Binokay F, Seydaoglu G. et al. Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound. Fetal Diagn Ther 2013; 33: 36-40
- 24 Mangels KJ, Tulipan N, Tsao LY. et al. Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg 2000; 32: 124-131
- 25 Bernard JP, Cuckle HS, Bernard MA. et al. Combined screening for open spina bifida at 11–13 weeks using fetal biparietal diameter and maternal serum markers. Am J Obstet Gynecol 2013; 209: 223.e1-5
- 26 Bruner JP, Tulipan N. Tell the truth about spina bifida. Ultrasound Obstet Gynecol 2004; 24: 595-596
- 27 Mazur JM, Shurtleff D, Menelaus M. et al. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am 1989; 71: 56-61
- 28 Stein R, Schröder A, Beetz R. et al. Urologische Erkrankungen bei Patienten mit Meningomyelozele. Diagnostik und Management. Urologe A 2007; 46: 1620-1642
- 29 Werhagen L, Gabrielsson H, Westgren N. et al. Medical complication in adults with spina bifida. Clin Neurol Neurosurg 2013; 115: 1226-1229
- 30 Kryger JV, González R, Barthold JS. Surgical management of urinary incontinence in children with neurogenic sphincteric incompetence. J Urol 2000; 163: 256-263
- 31 Lemelle JL, Guillemin F, Aubert D. et al. A multicenter evaluation of urinary incontinence management and outcome in spina bifida. J Urol 2006; 175: 208-212
- 32 Aschoff A, Kremer P, Hashemi B. et al. The scientific history of hydrocephalus and its treatment. Neurosurg Rev 1999; 22: 67-93
- 33 Messing-Jünger M, Röhrig A. Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst 2013; 29: 1553-1562
- 34 Swaroop VT, Dias L. Orthopedic management of spina bifida. Part I: hip, knee, and rotational deformities. J Child Orthop 2009; 3: 441-449
- 35 Özek MM, Cinalli G, Maixner WJ. Spina bifida Management and Outcome. In: Özek MM, Erol B, Tama IJ. Management of Vertebral Problems and Deformities. Milan: Springer; 2008: 305-318
- 36 Özek MM, Cinalli G, Maixner WJ. Spina bifida Management and Outcome. In: Bowman RM, McLone DG. Tethered Cord in Children with Spina Bifida. Milan: Springer; 2008: 267-274
- 37 Kohl T. Lifesaving Treatments for the Tiniest Patients – A Narrative Description of Old and New Minimally Invasive Approaches in the Arena of Fetal Surgery. Children 2023; 10: 67
- 38 Heffez DS, Aryanpur J, Hutchins GM. et al. The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 1990; 26: 987-992
- 39 Selauki M, Manning S, Bernfield M. The curly tail mouse model of human neural tube defects demonstrates normal spinal cord differentiation at the level of the myelomeningocele: implications for fetal surgery. Child’s Nerv System 2001; 17: 19-23
- 40 Correia-Pinto J, Reis JL, Hutchins GM. et al. In utero meconium exposure increases spinal cord necrosis in a rat model of myelomeningocele. J Pediatr Surg 2002; 37: 488-492
- 41 Drewek MJ, Bruner JP, Whetsell WO. et al. Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord. Pediatr Neurosurg 1997; 27: 190-193
- 42 Danzer E, Zhang L, Radu A. et al. Amniotic fluid levels of glial fibrillary acidic protein in fetal rats with retinoic acid induced myelomeningocele: a potential marker for spinal cord injury. Am J Obstet Gynecol 2011; 204: 178.e1-11
- 43 Kohl T. Stool contamination. J Neurosurg Pediatr 2010; 5: 422
- 44 Michejda M. Intrauterine treatment of spina bifida: primate model. Z Kinderchir 1984; 39: 259-261
- 45 Michejda M. Antenatal treatment of central nervous system defects: current and future developments in experimental therapies. Fetal Ther 1989; 4: 108-131
- 46 Meuli M, Meuli-Simmen C, Yingling CD. et al. Creation of myelomeningocele in utero: A model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 1995; 30: 1028-1033
- 47 Meuli M, Meuli-Simmen C, Yingling CD. et al. In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 1996; 31: 397-402
- 48 Korenromp MJ, Van Gool JD, Bruinese HW. et al. Early fetal leg movements in myelomeningocele. Lancet 1986; 1: 917-918
- 49 Warsof SL, Abramowicz JS, Sayegh SK. et al. Lower limb movements and urologic function in fetuses with neural tube and other central nervous system defects. Fetal Ther 1988; 3: 129-134
- 50 Sival DA, Begeer JH, Staal-Schreinemachers AL. et al. Perinatal motor behaviour and neurological outcome in spina bifida aperta. Early Hum Dev 1997; 50: 27-37
- 51 Meuli M, Meuli-Simmen C, Hutchins GM. et al. The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. Pediatr Surg 1997; 32: 448-452
- 52 Tulipan N, Hernanz-Schulman M, Lowe LH. et al. Intrauterine myelomeningocele repair reverses preexisting hindbrain herniation. Pediatr Neurosurg 1999; 31: 137-142
- 53 Chiari H. Über die Veränderungen des Kleinhirns, der Pons und der Medulla in Folge von congenitaler Hydrocephalie des Grosshirns. Dtsch Med Wochenschrift 1891.
- 54 Tubbs RS, Cohen-Gadol AA. Hans Chiari (1851–1916). J Neurol 2010;
- 55 Cruveilhier J. Anatomie Pathologique Du Corps Humain. 1st ed. Paris: J.B.Baillière; 1829
- 56 Cleland J. Contribution to the study of spina bifida, encephalie, and anencephalus. J Anatom Physiol London 1883; 17: 257-291
- 57 Julius A. Myelocyste, Transposition von Gewebskeimen und Sympodie. Beiträge zur pathologischen Anatomie und zur allgemeinen Pathologie; 1894. 16.
- 58 Encinas JL, Garciá-Cabezas MÁ, Barkovich J. et al. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J Pediatr Surg 2011; 46: 713-722
- 59 Adzick NS, Thom EA, Spong CY. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 2011; 364: 993-1004
- 60 Degenhardt J, Khaleeva A, Encensberger C. et al. Pre-operative assessment of ventricular size and ventricle-to-hemisphere area ratio permits estimation of the need for ventricculo-peritoneal shunt insertion during the first three months of postnatal life in fetuses before fetoscopic surgery for spina bifida. Ultraschall in Med 2013; 34: PS6_02
- 61 Danielle Diehl, Friederike Belke, Thomas Kohl. et al. Intrauterine Percutaneous Fetoscopic Repair of Myelomeningocele – 30 months follow up data. J Ultrasound Obstet Gynecol 2021; 57: 113-118
- 62 Weihong Y, Stevenson CB, Altaye M. et al. Diffusion tensor imaging in children following prenatal myelomeningocele repair and its predictive value for the need and timing of subsequent CSF diversion surgery for hydrocephalus. J Neurosurg Pediatr 2021; 27: 391-399
- 63 Adzick NS, Sutton LN, Crombleholme TM. et al. Successful fetal surgery for spina bifida. Lancet 1998; 352: 1675-1679
- 64 Licci M, Guzman R, Soleman J. Maternal and obstetric complications in fetal surgery for prenatal myelomeningocele repair: a systematic review. Neurosurg Focus 2019; 47: E11
- 65 Hagemann C, Krajewski K, Henne T. et al. Postnatal Repair of Open Neural Tube Defects: A Single Center with 90-Month Interdisciplinary Follow-Up. J Clin Med 2021; 10: 4510
- 66 Moehrlen U, Ochsenbein N, Vonzun L. et al. Fetal surgery for spina bifida in Zurich: results from 150 cases. Pediatr Surg Int 2021; 37: 311-316
- 67 Degenhardt J, Schürg R, Winarno A. et al. Percutaneous minimal-access fetoscopic surgery for spina bifida aperta. Part II: maternal management and outcome. Ultrasound Obstet Gynecol 2014; 44: 525-531
- 68 Cortes MS, Chmait RH, Lapa DA. et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol 2021; 225: 678.e1-678.e11
- 69 Copeland ML, Bruner JP, Richards WO. et al. A model for in utero endoscopic treatment of myelomeningocele. Neurosurgery 1993; 33: 542-545
- 70 Bruner JP, Tulipan NE, Richards WO. Endoscopic coverage of fetal open myelomeningocele in utero. Am J Obstet Gynecol 1997; 176: 256-357
- 71 Bruner JP, Richards WO, Tulipan NB. Endoscopic coverage of fetal myelomeningocele in utero. Am J Obstet Gynecol 1999; 180: 153-158
- 72 Kohl T, Witteler R, Strümper D. et al. Operative techniques and strategies for minimally invasive fetoscopic fetal cardiac interventions in sheep. Surg Endosc 2000; 14: 424-430
- 73 Kohl T, Große Hartlage M, Kienitz D. et al. Percutaneous fetoscopic patch coverage of experimental lumbosacral full-thickness skin lesions in sheep – A minimally invasive technique aimed at minimizing maternal trauma from fetal surgery for myelomeningocele. Surg Endoscopy 2003; 17: 1218-1223
- 74 Kohl T, Hering R, Van de Vondel P. et al. Analysis of the step-wise clinical introduction of experimental percutaneous fetoscopic surgical techniques for upcoming minimally-invasive fetal cardiac interventions. Surgical Endosc 2006; 20: 1134-1143
- 75 Kohl T, Hering R, Heep A. et al. Percutaneous fetoscopic patch coverage of spina bifida aperta in the human – Early clinical experience and potential. Fetal Diagn Ther 2006; 21: 185-193
- 76 Hering R, Hoeft A, Putensen C. et al. Maternal haemodynamics and lung water content during percutaneous fetoscopic interventions under general anaesthesia. Brit J Anaesth 2009; 102: 523-527
- 77 Ziemann M, Fimmers R, Khaleeva A. et al. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic interventions on fetuses with spina bifida aperta. Surg Endosc 2018; 32: 3138-3148
- 78 Arens C, Koch C, Veit M. et al. Anesthetic management for percutaneous minimally invasive fetoscopic surgery of spina bifida aperta – a retrospective, descriptive report of clinical experience. Anesth Analg 2017; 125: 219-222
- 79 Kohl T. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: surgical technique and perioperative outcome. Ultrasound Obstet Gynecol 2014; 44: 515-524
- 80 Herrera SR, Leme RJ, Valente PR. et al. Comparison between two surgical techniques for prenatal correction of meningomyelocele in sheep. Einstein (Sao Paulo) 2012; 10: 455-461
- 81 Belfort MA, Whitehead WE, Shamshirsaz AA. et al. Comparison of two fetoscopic open neural tube defect repair techniques: single- vs three-layer closure. Ultrasound Obstet Gynecol 2020; 56: 532-540
- 82 Ewing DC, Dempsey R, Belfort MA. et al. An Unreported Complication After Fetoscopic Myelomeningocele Closure. J Craniofac Surg 2019; 30: 578-580
- 83 Bruner JP, Tulipan N, Paschall RL. et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA 1999; 282: 1819-1825
- 84 Houtrow AJ, MacPherson C, Jackson-Coty J. et al. JAMA Prenatal Repair and Physical Functioning Among Children With Myelomeningocele: A Secondary Analysis of a Randomized Clinical Trial. Pediatr 2021; 175: e205674
- 85 Verbeek RJ, Heep A, Maurits NM. et al. Fetal endoscopic myelomeningocele closure preserves segmental neurological function. Dev Med Child Neurol 2012; 54: 15-22
- 86 Lapa DA, Chmait RH, Gielchinsky Y. et al. Percutaneous fetoscopic spina bifida repair: effect on ambulation and need for postnatal cerebrospinal fluid diversion and bladder catheterization. Ultrasound Obstet Gynecol 2021; 58: 582-589
- 87 Tubbs RS, Chambers MR, Smyth MD. et al. Late gestation intrauterine myelomeningocele repair does not improve lower extremity function. Pediatr Neurosurg 2003; 38: 128-132
- 88 Tarcan T, Bauer S, Olmedo E. et al. Long-term followup of newborns with myelodysplasia and normal urodynamic findings: Is followup necessary?. J Urol 2001; 165: 564-567
- 89 Brock JW, Thomas JC, Baskin LS. et al. Effect of Prenatal Repair of Myelomeningocele on Urological Outcomes at School Age. Urol 2019; 202: 812-818
- 90 Mazzone L, Hölscher AC, Moehrlen U. et al. Urological Outcome after Fetal Spina Bifida Repair: Data from the Zurich Cohort. Fetal Diagn Ther 2020; 47: 882-888
- 91 Verbeek RJ, PastuszkaKoszutski T. et al. The effect of fetally open, fetoscopic and postnatal meningomyelocele closure on neuromuscular outcome in spina bifida – Preliminary data. Eur J Paed Neurology 2017; 21 (Suppl. 01) E83
- 92 Graf K, Kohl T, Neubauer BA. et al. Percutaneous minimally-invasive fetoscopic surgery for spina bifida aperta – Part III – Postnatal neurosurgical interventions in the first year of life. Ultrasound Obstet Gynecol 2015; 47: 158-161