Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(22): 4971-4978
DOI: 10.1055/a-1818-0576
DOI: 10.1055/a-1818-0576
special topic
Aryne Chemistry in Synthesis
3-Trifluoromethylbenzyne: Precise Orientation in Cycloaddition Reaction Enabled Regioselective Synthesis of Trifluoromethylated Triptycenes
This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. JP18H02557, JP18H04418, JP18H04624, JP20H04780, JP20K21198, and JP20K15283), Nagase Science Technology Foundation (M.S.), Asahi Glass Foundation (T.I.), and the Integrated Research Consortium on Chemical Sciences (IRCCS) Fusion Emergent Research Program (T.I.). This work was performed under the Cooperative Research Program ‘Network Joint Research Center for Materials and Devices’. L.K. acknowledges support by the National Science Foundation (Graduate Research Fellowship Grant No. 1449440).
Abstract
The first regioselective addition reactions to 3-trifluoromethylbenzyne are reported. Triple cycloaddition of ynolates to the benzyne provided 1,8,13-tris(trifluoromethyl)triptycenes with high regioselectivity. 1-Trifluoromethyltriptycenes were regioselectively obtained by the Diels–Alder reaction of anthranoxides with the benzyne. These selectivities are attributed to the electron-acceptor nature of the trifluoromethyl group on the benzyne.
Key words
benzynes - trifluoromethyl group - triptycenes - regioselective synthesis - cycloaddition - negative hyperconjugationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1818-0576.
- Supporting Information
Publication History
Received: 14 March 2022
Accepted after revision: 05 April 2022
Accepted Manuscript online:
05 April 2022
Article published online:
31 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 2a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2b Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 2c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3a O’Connor MJ, Boblak KN, Topinka MJ, Kindelin PJ, Briski JM, Zheng C, Klumpp DA. J. Am. Chem. Soc. 2010; 132: 3266
- 3b Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 4 McClinton MA, McClinton DA. Tetrahedron 1992; 48: 6555
- 5a Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
- 5b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 6a Han Y, Meng Z, Ma YX, Chen CF. Acc. Chem. Res. 2014; 47: 2026
- 6b Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
- 6c Chen C.-F, Han Y. Acc. Chem. Res. 2018; 51: 2093
- 6d Ueberricke L, Mastalerz M. Chem. Rec. 2021; 21: 558
- 7a Shindo M. Chem. Soc. Rev. 1998; 27: 367
- 7b Shindo M. Synthesis 2003; 2275
- 7c Shindo M. Tetrahedron 2007; 63: 10
- 7d Shindo M, Matsumoto K. Recent Advances in the Chemistry of Metal Ynolates. In Patai’s Chemistry of Functional Groups, Vol. 1. Zabicky J. John Wiley & Sons, Ltd; Chichester: 2016: 1
- 7e Shindo M, Iwata T. Synlett 2022; 33: 531
- 8a Umezu S, dos Passos Gomes G, Yoshinaga T, Sakae M, Matsumoto K, Iwata T, Alabugin I, Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298
- 8b Sun J, Iwata T, Shindo M. Chem. Lett. 2020; 49: 1084
- 8c Yoshinaga T, Fujiwara T, Iwata T, Shindo M. Chem. Eur. J. 2019; 25: 13855
- 8d Iwata T, Yoshinaga T, Shindo M. Synlett 2020; 31: 1903
- 8e Iwata T, Kumagai S, Yoshinaga T, Hanada M, Shiota Y, Yoshizawa K, Shindo M. Chem. Eur. J. 2021; 27: 11548
- 9 Iwata T, Shindo M. Chem. Lett. 2021; 50: 39
- 10 Vatsadze SZ, Loginova YD, dos Passos Gomes G, Alabugin IV. Chem. Eur. J. 2017; 23: 3225
- 11 Alabugin IV. Stereoelectronic Effects . John Wiley & Sons, Ltd; Chichester, UK: 2016: 257
- 12 Iwata T, Hyodo M, Fukami T, Shiota Y, Yoshizawa K, Shindo M. Chem. Eur. J. 2020; 26: 8506
- 13a Yamamoto G, Suzuki M, Ōki M. Bull. Chem. Soc. Jpn. 1983; 56: 306
- 13b Bailly F, Cottet F, Schlosser M. Synthesis 2005; 791
- 13c Frantz DK, Linden A, Baldridge KK, Siegel JS. J. Am. Chem. Soc. 2012; 134: 1528
- 13d Nikitin K, Müller-Bunz H, McGlinchey MJ. Organometallics 2013; 32: 6118
- 13e Hornum M, Mulberg MW, Szomek M, Reinholdt P, Brewer JR, Wüstner D, Kongsted J, Nielsen P. J. Org. Chem. 2021; 86: 1471
- 14a Gribble GW, Keavy DJ, Branzt SE, Kelly WJ, Pals MA. Tetrahedron Lett. 1988; 29: 6227
- 14b Yoshida S, Nagai A, Uchida K, Hosoya T. Chem. Lett. 2017; 46: 733
- 15 Matsumoto T, Hosoya T, Katsuki M, Suzuki K. Tetrahedron Lett. 1991; 32: 6735
- 16a Shindo M, Sato Y, Shishido K. Tetrahedron 1998; 54: 2411
- 16b Shindo M, Sato Y, Koretsune R, Yoshikawa T, Matsumoto K, Itoh K, Shishido K. Chem. Pharm. Bull. 2003; 51: 477
- 16c Shindo M, Matsumoto K, Shishido K. Org. Synth. 2007; 84: 11
- 16d Sun J, Yoshiiwa T, Iwata T, Shindo M. Org. Lett. 2019; 21: 6585
- 17a Mallory FB, Mallory CW, Ricker WM. J. Am. Chem. Soc. 1975; 97: 4770
- 17b Mallory FB, Mallory CW, Ricker WM. J. Org. Chem. 1985; 50: 457
- 17c Takemura H, Kotoku M, Yasutake M, Shinmyozu T. Eur. J. Org. Chem. 2004; 2019
- 17d Struble MD, Holl MG, Scerba MT, Siegler MA, Lectka T. J. Am. Chem. Soc. 2015; 137: 11476
- 17e Hierso J.-C. Chem. Rev. 2014; 114: 4838
- 18a Ikawa T, Kaneko H, Masuda S, Ishitsubo E, Tokiwa H, Akai S. Org. Biomol. Chem. 2015; 13: 520
- 18b Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
- 19a Gold B, Shevchenko NE, Bonus N, Dudley GB, Alabugin IV. J. Org. Chem. 2012; 77: 75
- 19b Harris T, Alabugin IV. Mendeleev Commun. 2019; 29: 237
- 19c Harris T, dos Passos Gomes G, Ayad S, Clark RJ, Lobodin VV, Tuscan M, Hanson K, Alabugin IV. Chem 2017; 3: 629
- 20a Pieper U, Walter S, Klingebiel U, Stalke D. Angew. Chem. Int. Ed. Engl. 1990; 29: 209
- 20b Yamazaki T, Haga J, Kitazume T, Nakamura S. Chem. Lett. 1991; 20: 2171
- 20c Shinohara N, Haga J, Yamazaki T, Kitazume T, Nakamura S. J. Org. Chem. 1995; 60: 4363
- 20d Egami H, Usui Y, Kawamura S, Shimizu R, Nagashima S, Sodeoka M. J. Fluorine Chem. 2015; 179: 121
- 21 CCDC 2154694 (distal-11), CCDC 2154695 (13a), and CCDC 2154697 (13d) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 22 Iwata T, Kawano R, Fukami T, Shindo M. Chem. Eur. J. 2022; 28: e202104160
- 23 Kofron WG, Baclawski LM. J. Org. Chem. 1976; 41: 1879
For reviews, see:
For reviews, see:
For representative examples, see:
For a review, see:
For representative examples, see: