Subscribe to RSS
DOI: 10.1055/a-1826-0641
Diameter of the Cochlear Nerve Canal predicts Cochlear Nerve Deficiency in Children with Sensorineural Hearing Loss
Der Durchmesser des Canalis nervi cochlearis als Marker einer Cochlearisaplasie bei Kindern mit sensorineuraler SchwerhörigkeitAbstract
Purpose Detection of cochlear nerve deficiency (CND) is usually straightforward using magnetic resonance imaging (MRI). In patients in whom MRI cannot be performed or imaging provides equivocal findings, computed tomography (CT) of the temporal bone might offer indirect evidence of CND. Our study aimed to derive a cut-off value for the diameter of the cochlear nerve canal (CNC) and internal auditory canal (IAC) in temporal bone CT to predict CND.
Materials and Methods This retrospective study included 70 children with sensorineural hearing loss (32 with CND and 38 control patients). The height, width, and cross-sectional area of the IAC and diameter of the CNCs were determined using temporal bone CT. Receiver operating characteristic (ROC) and Student’s t-tests were performed for each parameter.
Results The mean diameter of the CNCs was significantly smaller in children with CND than in the control group (1.2 mm versus 2.4 mm, p < .001). The optimal threshold for CNC for separation of the two groups was 1.9 mm, resulting in a sensitivity of 98.7 % and specificity of 89.2 %. The IAC dimensions could not distinguish between children with CND and controls.
Conclusion A CNC diameter of less than 1.9 mm is a reliable predictor of CND in children with sensorineural hearing loss.
Key Points:
-
A small cochlear nerve canal predicts cochlear nerve deficiency (CND)
-
The size of the internal auditory canal cannot predict CND
-
Whenever MRI is impossible or ambigous, CT can rule out CND
Citation Format
-
Sorge M, Sorge I, Pirlich M et al. Diameter of the Cochlear Nerve Canal predicts Cochlear Nerve Deficiency in Children with Sensorineural Hearing Loss. Fortschr Röntgenstr 2022; 194: 1132 – 1139
Zusammenfassung
Ziel Eine Nervus-Cochlearis-Defizienz (CND) kann mittels Magnetresonanztomografie (MRT) in der Regel einfach diagnostiziert werden. Bei Patienten, bei denen eine MRT kontraindiziert ist oder keine eindeutigen Ergebnisse erbringt, kann die Computertomografie (CT) des Schläfenbeins einen indirekten Nachweis der CND liefern. Ziel unserer Studie war es, einen Schwellenwert für den Durchmesser des Canalis nervi cochlearis (CNC) und des inneren Gehörgangs (IAC) im Schläfenbein-CT für die Vorhersage einer CND zu ermitteln.
Material und Methoden An der retrospektiven Studie nahmen 70 Kinder mit Innenohrschwerhörigkeit teil (32 mit CND und 38 Kontrollpatienten). Die Höhe, Breite und Querschnittsfläche der IAC und der Durchmesser der CNC wurden mittels Schläfenbein-CT bestimmt. Für jeden Parameter wurde eine Receiver Operating Characteristic (ROC) und ein Studentʼs t-Tests durchgeführt.
Ergebnisse Der mittlere Durchmesser der CNCs war bei Kindern mit CND deutlich kleiner als in der Kontrollgruppe (1,2 mm gegenüber 2,4 mm, p < .001). Der optimale Schwellenwert zur Unterscheidung der beiden Gruppen lag für den CNC bei 1,9 mm mit einer Sensitivität von 98,7 % und einer Spezifität von 89,2 %. Die Dimensionen des IAC waren für die Unterscheidung zwischen Kindern mit und ohne CND nicht geeignet.
Schlussfolgerungen Ein CNC-Durchmesser unter 1,9 mm ist ein zuverlässiger Prädiktor für CND bei Kindern mit sensorineuralem Hörverlust.
Kernaussagen:
-
Ein kleiner Canalis nervi cochlearis ist ein exzellenter Prädiktor einer Nervus-Cochlearis-Defizienz (CND)
-
Die Größe des inneren Gehörgangs hingegen ist kein guter Prädiktor
-
Wenn eine MRT kontraindiziert ist, kann die CT eine CND ausschließen
Key words
internal auditory canal - cochlear implantation - cochlear nerve dysplasia - cochlear nerve canalPublication History
Received: 20 December 2021
Accepted: 22 March 2022
Article published online:
01 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gross M, Lange K, Spormann-Lagodzinski M. Angeborene Erkrankungen des Hörvermögens bei Kindern. HNO 2001; 49: 602-617
- 2 Parry DA, Booth T, Roland PS. Advantages of magnetic resonance imaging over computed tomography in preoperative evaluation of pediatric cochlear implant candidates. Otology and Neurotology 2005; 26: 976-982
- 3 Tamplen M, Schwalje A, Lustig L. et al. Utility of preoperative computed tomography and magnetic resonance imaging in adult and pediatric cochlear implant candidates. Laryngoscope 2016; 126: 1440-1445
- 4 Chin O, Dharsono F, Kuthubutheen J. et al. Is CT necessary for imaging paediatric congenital sensorineural hearing loss?. Cochlear Implants International 2020; 21: 75-82
- 5 Yigit O, Kalaycik Ertugay C, Yasak AG. et al. Which imaging modality in cochlear implant candidates?. European Archives of Oto-Rhino-Laryngology 2019; 276: 1307-1311
- 6 Lee SY, Kim S, Bae Y. et al. Appropriate Imaging Modality for the Etiologic Diagnosis of Congenital Single-Sided Deafness in Children. Journal of Clinical Medicine 2018; 7: 515
- 7 Miyasaka M, Nosaka S, Morimoto N. et al. CT and MR imaging for pediatric cochlear implantation: Emphasis on the relationship between the cochlear nerve canal and the cochlear nerve. Pediatric Radiology 2010; 40: 1509-1516
- 8 Yan F, Li J, Xian J. et al. The Cochlear Nerve Canal and Internal Auditory Canal in Children with Normal Cochlea but Cochlear Nerve Deficiency. Acta Radiologica 2013; 54: 292-298
- 9 Glastonbury CM, Davidson HC, Harnsberger HR. et al. Imaging findings of cochlear nerve deficiency. AJNR American journal of neuroradiology 2002; 23: 635-643
- 10 Kim HS, Kim DI, Chung IH. et al. Topographical relationship of the facial and vestibulocochlear nerves in the subarachnoid space and internal auditory canal. AJNR American journal of neuroradiology 1998; 19: 1155-1161
- 11 Kim H, Kim DY, Ha EJ. et al. Clinical Value of Measurement of Internal Auditory Canal in Pediatric Cochlear Implantation. Annals of Otology, Rhinology and Laryngology 2019; 128: 61S-68S
- 12 Chetcuti K, Kumbla S. The internal acoustic canal – another review area in paediatric sensorineural hearing loss. Pediatric Radiology 2016; 46: 562-569
- 13 Stjernholm C, Muren C. Dimensions of the cochlear nerve canal: A radioanatomic investigation. Acta Oto-Laryngologica 2002; 122: 43-48
- 14 Komatsubara S, Haruta A, Nagano Y. et al. Evaluation of Cochlear Nerve Imaging in Severe Congenital Sensorineural Hearing Loss. ORL 2007; 69: 198-202
- 15 Lim C, Lim JH, Kim D. et al. Bony cochlear nerve canal stenosis in pediatric unilateral sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology 2018; 106: 72-74
- 16 Teissier N, Van Den Abbeele T, Sebag G. et al. Computed tomography measurements of the normal and the pathologic cochlea in children. Pediatric Radiology 2010; 40: 275-283
- 17 Kono T. Computed tomographic features of the bony canal of the cochlear nerve in pediatric patients with unilateral sensorineural hearing loss. Radiation Medicine 2008; 26: 115-119
- 18 Vilchez-Madrigal LD, Blaser SI, Wolter NE. et al. Children with unilateral cochlear nerve canal stenosis have bilateral cochleovestibular anomalies. Laryngoscope 2019; 129: 2403-2408
- 19 Tahir E, Bajin MD, Atay G. et al. Bony cochlear nerve canal and internal auditory canal measures predict cochlear nerve status. Journal of Laryngology and Otology 2017; 131: 676-683
- 20 Erkoç MF, Imamoglu H, Okur A. et al. Normative size evaluation of internal auditory canal with magnetic resonance imaging: review of 3786 patients. Folia morphologica 2012; 71: 217-220
- 21 Lipschitz N, Kohlberg GD, Scott M. et al. Imaging findings in pediatric single-sided deafness and asymmetric hearing loss. Laryngoscope 2020; 130: 1007-1010
- 22 Masuda S, Usui S, Matsunaga T. High prevalence of inner-ear and/or internal auditory canal malformations in children with unilateral sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology 2013; 77: 228-232