Synthesis 2022; 54(22): 4979-4988
DOI: 10.1055/a-1826-2545
special topic
Aryne Chemistry in Synthesis

Intramolecular Propargylic Ene Reaction of Benzyne En Route to Highly Functionalized Allenes and Allenamides

Tsukasa Tawatari
,
Ritsuki Kato
,
Kiyosei Takasu
,
This work was financially supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) (Grant Nos. 21H02068, 21H05211), and Shionogi & Co., Ltd. T.T. acknowledges support from the Japan Science and Technology Agency (JST), SPRING (Grant No. JPMJSP2110), and the Japan Science Society (JSS) for a Sasakawa Scientific Research Grant.


Abstract

A variety of highly functionalized allenes and allenamides are prepared by intramolecular propargylic ene reactions of benzynes. Specific benzyne precursors having a chlorodiisopropylsilyl group serve as platforms to link with various propargyl alcohols via a Si–O bond, thereby expanding the scope of this reaction. Also demonstrated is a complete transmission of point to axial chirality to give a chiral, non-racemic allenamide.

Supporting Information



Publication History

Received: 16 March 2022

Accepted after revision: 14 April 2022

Accepted Manuscript online:
14 April 2022

Article published online:
07 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
  • 2 Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818

    • For selected recent reviews, see:
    • 4a Tejedor D, Méndez-Abt G, Cotos L, García-Tellado F. Chem. Soc. Rev. 2013; 42: 458
    • 4b Neff RK, Frantz DE. ACS Catal. 2014; 4: 519
    • 4c Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
    • 4d Chu W.-D, Zhang Y, Wang J. Catal. Sci. Technol. 2017; 7: 4570
    • 4e Fu L, Greßies S, Chen P, Liu G. Chin. J. Chem. 2019; 38: 91
    • 4f Du S, Zhou A.-X, Yang R, Song X.-R, Xiao Q. Org. Chem. Front. 2021; 8: 6760
    • 5a Altable M, Filippone S, Martín-Domenech A, Güell M, Solà M, Martín N. Org. Lett. 2006; 8: 5959
    • 5b Robinson JM, Sakai T, Okano K, Kitawaki T, Danheiser RL. J. Am. Chem. Soc. 2010; 132: 11039
    • 5c Wang Y, Hoye TR. Org. Lett. 2018; 20: 4425
    • 5d Sasaki M, Hamzik PJ, Ikemoto H, Bartko SG, Danheiser RL. Org. Lett. 2018; 20: 6244
  • 6 Jayanth TT, Jeganmohan M, Cheng M.-J, Chu S.-Y, Cheng C.-H. J. Am. Chem. Soc. 2006; 128: 2232

    • For selected recent reviews, see:
    • 7a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 7b Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 7c Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2013; 11: 191
    • 7d Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
    • 7e Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
    • 7f Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
    • 7g Roy T, Biju AT. Chem. Commun. 2018; 54: 2580
    • 7h Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
    • 7i Pozo I, Guitián E, Pérez D, Peña D. Acc. Chem. Res. 2019; 52: 2472
    • 7j Werz DB, Biju AT. Angew. Chem. Int. Ed. 2019; 59: 3385
    • 7k Shi J, Li L, Li Y. Chem. Rev. 2021; 121: 3892
    • 7l Sarmah M, Sharma A, Gogoi P. Org. Biomol. Chem. 2021; 19: 737
    • 7m Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413
    • 7n Modern Aryne Chemistry . Biju AT. Wiley-VCH; Weinheim: 2021
  • 8 In the intermolecular approach described in reference 7, there is no example of the synthesis of tetrasubstituted allenes. In addition, our preliminary attempt at the intermolecular reaction of o-silylaryl triflate 6 and 3-methyl-1-butyne (7) (4 equiv.), having an extra methyl group at the propargylic position, under the reaction conditions according to Cheng’s report (see Ref. 6) gave trisubstituted allene 8 in only 10% yield (Scheme 4).
  • 9 We confirmed that the intermolecular reaction of o-silylaryl triflate 6 with allenamide 9 (1 equiv.) (KF, 18-crown-6, THF, rt) afforded one major product, which was tentatively assigned as the corresponding [2+2] cycloadduct 10, accompanied by many byproducts (Scheme 5).
    • 11a Nishii A, Takikawa H, Suzuki K. Chem. Sci. 2019; 10: 3840
    • 11b Takikawa H, Nishii A, Takiguchi H, Yagishita H, Tanaka M, Hirano K, Uchiyama M, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2020; 59: 12440
    • 11c Tawatari T, Takasu K, Takikawa H. Chem. Commun. 2021; 57: 11863
    • 12a Jadhav VH, Jeong HJ, Choi W, Kim DW. Chem. Eng. J. 2015; 270: 36
    • 12b Ito T, Tsutsumi M, Yamada K, Takikawa H, Yamaoka Y, Takasu K. Angew. Chem. Int. Ed. 2019; 58: 11836
    • 13a Schade MA, Yamada S, Knochel P. Chem. Eur. J. 2011; 17: 4232
    • 13b Li H, Grassi D, Guénée L, Bürgi T, Alexakis A. Chem. Eur. J. 2014; 20: 16694
    • 14a Wei L, Xiong H, Hsung RP. Acc. Chem. Res. 2003; 36: 773
    • 14b Lu T, Lu Z, Ma Z.-X, Zhang Y, Hsung RP. Chem. Rev. 2013; 113: 4862
    • 14c Geng D. Chin. J. Org. Chem. 2019; 39: 301
    • 14d Li X, Liu Y, Ding N, Tan X, Zhao Z. RSC Adv. 2020; 10: 36818
  • 15 For the preparation of (+)-3k, see the Supporting Information.
  • 16 The enantiomeric purity of (–)-4k was assessed by HPLC analysis on a chiral stationary phase (Daicel CHIRALPAK OD-H, see the Supporting Information). Although the absolute stereochemistry of (–)-4k was not assigned, it is reasonable to propose the (S) configuration, as described, in view of the concerted nature of this reaction.
  • 17 Li J, Kong W, Fu C, Ma S. J. Org. Chem. 2009; 74: 5104